Orbifold-Hodge numbers of Hilbert schemes

Lothar Göttsche

Banach Center Publications (1996)

  • Volume: 36, Issue: 1, page 83-87
  • ISSN: 0137-6934

How to cite

top

Göttsche, Lothar. "Orbifold-Hodge numbers of Hilbert schemes." Banach Center Publications 36.1 (1996): 83-87. <http://eudml.org/doc/208585>.

@article{Göttsche1996,
author = {Göttsche, Lothar},
journal = {Banach Center Publications},
keywords = {action of finite group; orbifold Euler number; Kähler manifold; Moishezon manifold; orbifold Hodge polynomial},
language = {eng},
number = {1},
pages = {83-87},
title = {Orbifold-Hodge numbers of Hilbert schemes},
url = {http://eudml.org/doc/208585},
volume = {36},
year = {1996},
}

TY - JOUR
AU - Göttsche, Lothar
TI - Orbifold-Hodge numbers of Hilbert schemes
JO - Banach Center Publications
PY - 1996
VL - 36
IS - 1
SP - 83
EP - 87
LA - eng
KW - action of finite group; orbifold Euler number; Kähler manifold; Moishezon manifold; orbifold Hodge polynomial
UR - http://eudml.org/doc/208585
ER -

References

top
  1. [B-D] V. V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, preprint 1994. Zbl0864.14022
  2. [Be] A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782. Zbl0537.53056
  3. [D*1] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds I, Nuclear Phys. B 261 (1985), 678-686. 
  4. [D*2] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds II, Nuclear Phys. B 274 (1985), 285-314. 
  5. [Fo1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 10 (1968), 511-521. Zbl0176.18401
  6. [Fo2] J. Fogarty, Algebraic families on an algebraic surface II, Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 96 (1974), 660-687. Zbl0299.14020
  7. [Gö1] L. Göttsche, The Betti numbers of the Hilbert schemes of points on a smooth projective surface, Math. Ann. 286 (1990), 193-207. Zbl0679.14007
  8. [Gö2] L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer Verlag, Berlin, Heidelberg, New York, 1994. Zbl0814.14004
  9. [G-S] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235-245. Zbl0789.14002
  10. [H-H] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, Math. Ann. 286 (1990), 255-260. Zbl0679.14006
  11. [Re] M. Reid, The MacKay correspondence and the physicists' Euler number, Lecture notes given at Univ. of Utah and at MSRI 1992. 
  12. [Ro] S.-S. Roan, Orbifold Euler characteristic, Inst. of Math. Acad. Sinica, preprint 1993. 
  13. [V] C. Vafa, Sting vacua and orbifoldized LG Models, Modern Phys. Lett. A 4 (1989), 1169-1185. 
  14. [Z] E. Zaslow Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 105 (1993), 306-331. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.