A tutorial on conformal groups

Ian Porteous

Banach Center Publications (1996)

  • Volume: 37, Issue: 1, page 137-150
  • ISSN: 0137-6934

Abstract

top
Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to p , q , the real vector space p + q , furnished with the quadratic form x ( 2 ) = x · x = - x 1 2 - x 2 2 - . . . - x p 2 + x p + 1 2 + . . . + x p + q 2 , and especially with a description of this group that involves Clifford algebras.

How to cite

top

Porteous, Ian. "A tutorial on conformal groups." Banach Center Publications 37.1 (1996): 137-150. <http://eudml.org/doc/208590>.

@article{Porteous1996,
abstract = {Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to $ℝ^\{p,q\}$, the real vector space $ℝ^\{p+q\}$, furnished with the quadratic form $x^\{(2)\} = x · x = -x_\{1\}^\{2\} - x_\{2\}^\{2\} - ... - x_\{p\}^\{2\} + x_\{p+1\}^\{2\} + ... + x_\{p+q\}^\{2\}$, and especially with a description of this group that involves Clifford algebras.},
author = {Porteous, Ian},
journal = {Banach Center Publications},
keywords = {conformal groups; Liouville theorem; conformal compactification; projective compactification; Möbius transformation; conformal split; para-vectors; Vahlen matrices; Clifford algebra},
language = {eng},
number = {1},
pages = {137-150},
title = {A tutorial on conformal groups},
url = {http://eudml.org/doc/208590},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Porteous, Ian
TI - A tutorial on conformal groups
JO - Banach Center Publications
PY - 1996
VL - 37
IS - 1
SP - 137
EP - 150
AB - Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to $ℝ^{p,q}$, the real vector space $ℝ^{p+q}$, furnished with the quadratic form $x^{(2)} = x · x = -x_{1}^{2} - x_{2}^{2} - ... - x_{p}^{2} + x_{p+1}^{2} + ... + x_{p+q}^{2}$, and especially with a description of this group that involves Clifford algebras.
LA - eng
KW - conformal groups; Liouville theorem; conformal compactification; projective compactification; Möbius transformation; conformal split; para-vectors; Vahlen matrices; Clifford algebra
UR - http://eudml.org/doc/208590
ER -

References

top
  1. [1] L. Ahlfors, Möbius transformations and Clifford numbers, I. Chavel, H.M. Parkas (eds.). Differential Geometry and Complex Analysis. Dedicated to H.E. Rauch, Springer-Verlag, Berlin, (1985), 65-73. 
  2. [2] É. Cartan, Sur l’espace anallagmatique réel à n dimensions, Ann. Polon. Math. 20 (1947), 266-278. Zbl0032.11403
  3. [3] É. Cartan, Deux théorèmes de géométrie anallagmatique réelle à n dimensions, Ann. Mat. Pura Appl. (4)28 (1949), 1-12. Zbl0036.37101
  4. [4] W.K. Clifford, (1876) On the Classification of Geometric Algebras, published as Paper XLIII in Mathematical papers. Edited by R. Tucker, Macmillan, London (1882). 
  5. [5] J. Cnops, Hurwitz Pairs and Applications of Möbius Transformations. Thesis, Universiteit Gent, 1994. 
  6. [6] J. Fillmore, and A. Springer, Möbius groups over general fields using Clifford algebras associated with spheres, Int. J. Theo. Phys. 29 (1990), 225-246 Zbl0702.51003
  7. [7] J. Haantjes, Conformal representations of an n - dimensional euclidean space with a non-definite fundamental form on itself, Proc. Ned. Akad. Wet. (Math.) 40 (1937), 700-705. Zbl0017.42201
  8. [8] R. Hermann, Appendix Kleinian mathematics from an advanced standpoint, A: Conformal and non-Euclidean geometry in R 3 from the Kleinian viewpoint, bound with Klein F. Developments of Mathematics in the 19th century. Translated by M. Ackerman, Math. Sci. Press, Brookline, Mass. USA, 1979, 367-376. 
  9. [9] N.H. Kuiper, On conformally-flat spaces in the large, Ann. Math. 50 (1949), 916-924. Zbl0041.09303
  10. [10] J. Liouville, Appendix to Monge, G. Application de l'analyse à la geométrie, 5 éd. par Liouville, 1850. 
  11. [11] J. Maks, Modulo ( 1 , 1 ) periodicity of Clifford algebras and the generalized (anti-)Möbius transformations. PhD Thesis, Technische Universiteit Delft., 1989. 
  12. [12] J. Maks, Clifford algebras and Möbius transformations, in A. Micali et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, Kluwer Acad. Publ., Dordrecht 1992. Zbl0760.15025
  13. [13] J.-B.-M.-C. Meusnier, Mémoire sur la courbure des surfaces, Mémoire Div. Sav., 10 (1785), 477-510. 
  14. [14] I. R. Porteous, Topological Geometry, 2nd Edition, with additional material on Triality, Cambridge University Press, 1981. (The part of this book concerned with Clifford algebras forms part of a new edition entitled Clifford Algebras and the Classical Groups published in 1995 by Cambridge University Press.) 
  15. [15] I. R. Porteous, Clifford algebra tables in F. Brackx et al (eds.). Clifford Algebras and their applications in Mathematical Physics, Kluwer Academic Publishers, 1993, 13-22. 
  16. [16] K. Th. Vahlen, Über Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-593. Zbl33.0721.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.