Fundamental solutions for Dirac-type operators
Banach Center Publications (1996)
- Volume: 37, Issue: 1, page 159-172
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topBernstein, Swanhild. "Fundamental solutions for Dirac-type operators." Banach Center Publications 37.1 (1996): 159-172. <http://eudml.org/doc/208593>.
@article{Bernstein1996,
abstract = {We consider the Dirac-type operators D + a, a is a paravector in the Clifford algebra. For this operator we state a Cauchy-Green formula in the spaces $C^1(G)$ and $W_\{p\}^\{1\}(G)$. Further, we consider the Cauchy problem for this operator.},
author = {Bernstein, Swanhild},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {159-172},
title = {Fundamental solutions for Dirac-type operators},
url = {http://eudml.org/doc/208593},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Bernstein, Swanhild
TI - Fundamental solutions for Dirac-type operators
JO - Banach Center Publications
PY - 1996
VL - 37
IS - 1
SP - 159
EP - 172
AB - We consider the Dirac-type operators D + a, a is a paravector in the Clifford algebra. For this operator we state a Cauchy-Green formula in the spaces $C^1(G)$ and $W_{p}^{1}(G)$. Further, we consider the Cauchy problem for this operator.
LA - eng
UR - http://eudml.org/doc/208593
ER -
References
top- [Be1] S. Bernstein, Analytische Untersuchungen in unbeschränkten Gebieten mit Anwendungen auf quaternionische Operatortheorie und elliptische Randwertprobleme, PhD Thesis, Freiberg University of Mining and Technology, 1993.
- [Be2] S. Bernstein, Cauchy-Green formulas in Clifford Analysis, to appear.
- [BDS] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman, Boston- London-Melbourne, 1982.
- [DL] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1 and 5, Springer-Verlag, 1992.
- [GS] K. Gürlebeck and W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems, Akademie-Verlag, Berlin, 1989. Zbl0699.35007
- [Jan] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics, World Scientific Publ. Co. Pt;. Ltd., 1989. Zbl0727.15015
- [Kr1] V. V. Kravchenko, Integral representation of biquaternionic hyperholomorphic functions and it's application PhD Thesis, Rostov State University, 1993 (Russian).
- [Kr2] V. V. Kravchenko, On the generalized holomorphic vectors, Abstracts of Republican Research Conference devoted to 200 birth of N.I. Lobachevskij, Odessa, Ukraine, 1992, Part 1, p. 35.
- [KS1] V. V. Kravchenko and M. V. Shapiro, Hypercomplex factorization of the multidimensional Helmholtz operator and some of its applications, Dokl. Sem. Inst. I.N. Vekua, Tbilisi 5 (1) (1990), 106-109 (Russian).
- [KS2] V. V. Kravchenko and M. V. Shapiro, Helmholtz operator with a quaternionic wave number and associated function theory, Deformations of Mathematical Structures. Ed. by J. Ławrynowicz, Kluwer Academic Publishers, Dordrecht 1993, 101-128.
- [MP] S. G. Michlin and S. Prößdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980.
- [Ob1] E. I. Obolashvili, Space analogous of generalized analytic functions, Soobch. Akad. Nauk Gruzin. SSR, 73, 1 (1974), 21-24 (Russian).
- [Ob2] E. I. Obolashvili, Spatial generalized holomorphic vectors, Different. Uravneniya 11 (1) (1975), 108-115 (Russian).
- [Ort] N. Ortner, Regularisierte Faltung von Distributionen. Teil 2: Eine Tabelle von Fundamentallösungen, Journal of Applied Mathematics and Physics (ZAMP), 31 (1980), 133-155.
- [Xu1] Z. Xu, Boundary value problems and function-theory for Spin-invariant differential operators, PhD Thesis, State University of Gent, 1989.
- [Xu2] Z. Xu, A function theory for the operator D → -λ, Complex Variables Theory Appl., 16 (1) (1991), 27-42.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.