Bi-axial Gegenbauer functions of the first and second kind
Banach Center Publications (1996)
- Volume: 37, Issue: 1, page 181-187
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. K. Common and F. Sommen, Axial Monogenic Functions from Holomorphic Functions, J. Math. Anal. Appl. 179 (1993), 610-629. Zbl0802.30001
- [2] A. K. Common and F. Sommen, Special Bi-Axial Monogenic Functions, J. Math. Anal. Appl. 185 (1994), 189-206.
- [3] A. K. Common and F. Sommen, Cauchy transforms and bi-axial monogenic power functions, Proccedings of Dienze conference on Clifford Algebras and Their Applications in Mathematical Physics, Kluwer, 1993, 85-90. Zbl0840.30029
- [4] A. K. Common and F. Sommen, Bi-axial Gegenbauer functions of the second kind, to be published in: Journal of Mathematical Analysis and Applications.
- [5] J. Cnops, Orthogonal polynomials associated with the dirac operator in euclidean space, Chinese Ann.Math. 13B:1 (1992), 68-79.
- [6] H. Hochstadt, The Functions of Mathematical Physics, (1971) Wiley-Interscience, New York. Zbl0217.39501
- [7] G. Jank and F. Sommen, Clifford analysis, bi-axial symmetry and pseudo-analytic functions, Complex Variables 13 (1990), 195-212. Zbl0703.30044
- [8] F. Sommen, Plane elliptic systems and monogenic functions in symmetric domains, Supp. Rend. Circ. Mat. Palermo. 6 (1984), 259-269. Zbl0564.30036