A simple proof of the spectral continuity of the Sturm-Liouville problem
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 183-186
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKosowski, PrzemysŁaw. "A simple proof of the spectral continuity of the Sturm-Liouville problem." Banach Center Publications 38.1 (1997): 183-186. <http://eudml.org/doc/208626>.
@article{Kosowski1997,
abstract = {The aim of this article is to present a simple proof of the theorem about perturbation of the Sturm-Liouville operator in Liouville normal form.},
author = {Kosowski, PrzemysŁaw},
journal = {Banach Center Publications},
keywords = {spectral continuity; perturbation; Sturm-Liouville operator; Liouville normal},
language = {eng},
number = {1},
pages = {183-186},
title = {A simple proof of the spectral continuity of the Sturm-Liouville problem},
url = {http://eudml.org/doc/208626},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Kosowski, PrzemysŁaw
TI - A simple proof of the spectral continuity of the Sturm-Liouville problem
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 183
EP - 186
AB - The aim of this article is to present a simple proof of the theorem about perturbation of the Sturm-Liouville operator in Liouville normal form.
LA - eng
KW - spectral continuity; perturbation; Sturm-Liouville operator; Liouville normal
UR - http://eudml.org/doc/208626
ER -
References
top- [1] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, Ginn-Blaisdell, Boston, 1962. Zbl0102.29901
- [2] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience, New York, 1953. Zbl0051.28802
- [3] C. T. Fulton and S. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, J. Math. Anal. Appl. 188 (1994), 297-340. Zbl0812.34073
- [4] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
- [5] B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991.
- [6] J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Clarendon Press, New York, 1993. Zbl0795.65053
- [7] M. H. Stone, Linear Transformations in Hilbert Space, American Mathematical Society, New York, 1932.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.