Singular evolution problems, regularization, and applications to physics, engineering, and biology

Günter Lumer

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 205-216
  • ISSN: 0137-6934

How to cite

top

Lumer, Günter. "Singular evolution problems, regularization, and applications to physics, engineering, and biology." Banach Center Publications 38.1 (1997): 205-216. <http://eudml.org/doc/208630>.

@article{Lumer1997,
author = {Lumer, Günter},
journal = {Banach Center Publications},
keywords = {singularity; analytic semigroups; shocks; regularized solutions; integrated solutions; transition problem; evolution problems},
language = {eng},
number = {1},
pages = {205-216},
title = {Singular evolution problems, regularization, and applications to physics, engineering, and biology},
url = {http://eudml.org/doc/208630},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Lumer, Günter
TI - Singular evolution problems, regularization, and applications to physics, engineering, and biology
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 205
EP - 216
LA - eng
KW - singularity; analytic semigroups; shocks; regularized solutions; integrated solutions; transition problem; evolution problems
UR - http://eudml.org/doc/208630
ER -

References

top
  1. [1] W. Arendt, Vector-valued Laplace transform and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
  2. [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595. Zbl0833.47034
  3. [4] R. Beals, On the abstract Cauchy problem, J. Funct. Anal. 10 (1972), 281-299. Zbl0239.34028
  4. [3] R. Beals, Semigroups and abstract Gevrey spaces, ibid. 10 (1972), 300-398. Zbl0236.47044
  5. [5] J. Chazarain, Problèmes de Cauchy dans les espaces d'ultra-distributions, C. R. Acad. Sci. Paris Sér. A 226 (1968), 564-566. Zbl0162.46002
  6. [6] J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal. 7 (1971), 386-446. Zbl0211.12902
  7. [7] I. Cioranescu, Local convoluted semigroups, to appear. 
  8. [8] I. Cioranescu et G. Lumer, Problèmes d'évolution régularisés par un noyau général K(t). Formule de Duhamel, prolongements, théorèmes de génération, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1273-1278. Zbl0821.47032
  9. [9] I. Cioranescu et G. Lumer, On K(t)-convoluted semigroups, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. 324, 1995, 86-93. Zbl0828.34046
  10. [10] I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applications to operator theory, in: Spectral Theory, Banach Center Publ. 8, 1982, PWN, Warszawa, 77-220. 
  11. [11] Ph. Clément, H. Heijmans et al., One parameter semigroups, CWI Monographs, North-Holland, Amsterdam, 1987. 
  12. [12] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248. 
  13. [13] G. Da Prato and E. Sinestrari, Differential operators with non dense domains, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. Zbl0652.34069
  14. [14] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208. Zbl0651.47026
  15. [15] H. Emamirad, Systèmes pseudo différentiels d'évolution bien posés au sens des distributions de Beurling, Boll. Un. Mat. Ital. (6) 1 (1982), 303-322. Zbl0511.35091
  16. [16] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. Zbl0138.06203
  17. [17] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. Zbl0689.47014
  18. [18] V. Keyantuo, The Weierstrass formula and the abstract Cauchy problem, to appear. Zbl0839.34070
  19. [19] V. Keyantuo, On the boundary value theorem for holomorphic semigroups, preprint Math. Dep. Univ. of Puerto Rico, Rio Piedras. Zbl0832.47032
  20. [20] H. Komatsu, Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105. 
  21. [21] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61. Zbl0895.47029
  22. [22] J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164. Zbl0103.09001
  23. [23] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 577-582. Zbl0693.47033
  24. [24] G. Lumer, Applications de solutions généralisées et semi-groupes intégrés à des problèmes d'évolution, ibid. 311 (1990), 873-878. Zbl0738.47034
  25. [25] G. Lumer, Problèmes dissipatifs et analytiques mal posés : solutions et théorie asymptotique, ibid. 312 (1991), 831-836. Zbl0744.34059
  26. [26] G. Lumer, A (very) direct approach to locally lipschitz integrated semigroups and some new related results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDES 1990-1991, Louisiana State University, Baton Rouge, 1991, 88-107. 
  27. [27] G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l'identification de semi-groupes irréguliers analytiques et résultats de génération, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1033-1038. Zbl0768.47019
  28. [28] G. Lumer, Problèmes d'évolution avec chocs (changements brusques de conditions au bord) et valeurs au bord variables entre chocs consécutifs, ibid. 316 (1993), 41-46. Zbl0790.58006
  29. [29] G. Lumer, Models for diffusion-type phenomena with abrupt changes in boundary conditions, in Banach space and classical context. Asymptotics under periodic shocks, in: Evolution Equations, Control Theory and Biomathematics, Lecture Notes in Pure Appl. Math. 155, Marcel Dekker, New York, 1994, 337-351. 
  30. [30] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Annales Saraviensis 5 (1) (1994), 1-102. Zbl0813.34057
  31. [31] G. Lumer, Singular problems, generalized solutions, and stability topologies, in: Partial Differential Equations. Models in Physics and Biology, Math. Res. 82, Akademie Verlag, Berlin, 1994, 204-215. Zbl0834.35058
  32. [32] I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242. Zbl0617.47032
  33. [33] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155. Zbl0675.47030
  34. [34] P. Shapira, Théorie des hyperfonctions, Lecture Notes in Math. 126, Springer, 1970. 
  35. [35] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. Zbl0589.47042
  36. [36] E. Sinestrari and W. von Wahl, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 339-355. Zbl0664.35041
  37. [37] H. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), 1035-1066. Zbl0734.34059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.