Singular evolution problems, regularization, and applications to physics, engineering, and biology
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 205-216
- ISSN: 0137-6934
Access Full Article
topHow to cite
topLumer, Günter. "Singular evolution problems, regularization, and applications to physics, engineering, and biology." Banach Center Publications 38.1 (1997): 205-216. <http://eudml.org/doc/208630>.
@article{Lumer1997,
author = {Lumer, Günter},
journal = {Banach Center Publications},
keywords = {singularity; analytic semigroups; shocks; regularized solutions; integrated solutions; transition problem; evolution problems},
language = {eng},
number = {1},
pages = {205-216},
title = {Singular evolution problems, regularization, and applications to physics, engineering, and biology},
url = {http://eudml.org/doc/208630},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Lumer, Günter
TI - Singular evolution problems, regularization, and applications to physics, engineering, and biology
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 205
EP - 216
LA - eng
KW - singularity; analytic semigroups; shocks; regularized solutions; integrated solutions; transition problem; evolution problems
UR - http://eudml.org/doc/208630
ER -
References
top- [1] W. Arendt, Vector-valued Laplace transform and Cauchy problems, Israel J. Math. 59 (1987), 327-352. Zbl0637.44001
- [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595. Zbl0833.47034
- [4] R. Beals, On the abstract Cauchy problem, J. Funct. Anal. 10 (1972), 281-299. Zbl0239.34028
- [3] R. Beals, Semigroups and abstract Gevrey spaces, ibid. 10 (1972), 300-398. Zbl0236.47044
- [5] J. Chazarain, Problèmes de Cauchy dans les espaces d'ultra-distributions, C. R. Acad. Sci. Paris Sér. A 226 (1968), 564-566. Zbl0162.46002
- [6] J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal. 7 (1971), 386-446. Zbl0211.12902
- [7] I. Cioranescu, Local convoluted semigroups, to appear.
- [8] I. Cioranescu et G. Lumer, Problèmes d'évolution régularisés par un noyau général K(t). Formule de Duhamel, prolongements, théorèmes de génération, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1273-1278. Zbl0821.47032
- [9] I. Cioranescu et G. Lumer, On K(t)-convoluted semigroups, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. 324, 1995, 86-93. Zbl0828.34046
- [10] I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applications to operator theory, in: Spectral Theory, Banach Center Publ. 8, 1982, PWN, Warszawa, 77-220.
- [11] Ph. Clément, H. Heijmans et al., One parameter semigroups, CWI Monographs, North-Holland, Amsterdam, 1987.
- [12] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.
- [13] G. Da Prato and E. Sinestrari, Differential operators with non dense domains, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. Zbl0652.34069
- [14] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208. Zbl0651.47026
- [15] H. Emamirad, Systèmes pseudo différentiels d'évolution bien posés au sens des distributions de Beurling, Boll. Un. Mat. Ital. (6) 1 (1982), 303-322. Zbl0511.35091
- [16] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. Zbl0138.06203
- [17] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. Zbl0689.47014
- [18] V. Keyantuo, The Weierstrass formula and the abstract Cauchy problem, to appear. Zbl0839.34070
- [19] V. Keyantuo, On the boundary value theorem for holomorphic semigroups, preprint Math. Dep. Univ. of Puerto Rico, Rio Piedras. Zbl0832.47032
- [20] H. Komatsu, Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105.
- [21] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61. Zbl0895.47029
- [22] J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164. Zbl0103.09001
- [23] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 577-582. Zbl0693.47033
- [24] G. Lumer, Applications de solutions généralisées et semi-groupes intégrés à des problèmes d'évolution, ibid. 311 (1990), 873-878. Zbl0738.47034
- [25] G. Lumer, Problèmes dissipatifs et analytiques mal posés : solutions et théorie asymptotique, ibid. 312 (1991), 831-836. Zbl0744.34059
- [26] G. Lumer, A (very) direct approach to locally lipschitz integrated semigroups and some new related results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDES 1990-1991, Louisiana State University, Baton Rouge, 1991, 88-107.
- [27] G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l'identification de semi-groupes irréguliers analytiques et résultats de génération, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1033-1038. Zbl0768.47019
- [28] G. Lumer, Problèmes d'évolution avec chocs (changements brusques de conditions au bord) et valeurs au bord variables entre chocs consécutifs, ibid. 316 (1993), 41-46. Zbl0790.58006
- [29] G. Lumer, Models for diffusion-type phenomena with abrupt changes in boundary conditions, in Banach space and classical context. Asymptotics under periodic shocks, in: Evolution Equations, Control Theory and Biomathematics, Lecture Notes in Pure Appl. Math. 155, Marcel Dekker, New York, 1994, 337-351.
- [30] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Annales Saraviensis 5 (1) (1994), 1-102. Zbl0813.34057
- [31] G. Lumer, Singular problems, generalized solutions, and stability topologies, in: Partial Differential Equations. Models in Physics and Biology, Math. Res. 82, Akademie Verlag, Berlin, 1994, 204-215. Zbl0834.35058
- [32] I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242. Zbl0617.47032
- [33] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155. Zbl0675.47030
- [34] P. Shapira, Théorie des hyperfonctions, Lecture Notes in Math. 126, Springer, 1970.
- [35] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66. Zbl0589.47042
- [36] E. Sinestrari and W. von Wahl, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 339-355. Zbl0664.35041
- [37] H. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), 1035-1066. Zbl0734.34059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.