Hilbert modules and tensor products of operator spaces
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 227-246
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topMagajna, Bojan. "Hilbert modules and tensor products of operator spaces." Banach Center Publications 38.1 (1997): 227-246. <http://eudml.org/doc/208632>.
@article{Magajna1997,
abstract = {The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product $\bar\{H\}\hat\{⨂\}H$ is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with $∥ b∥_\{cb\}=∥ b∥ $. The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.},
author = {Magajna, Bojan},
journal = {Banach Center Publications},
keywords = {identification of the predual of ; projective operator space tensor product; Hilbert modules over commutative von Neumann algebras; bounded module homomorphism; completely bounded; projective tensor product of two operator modules; Haagerup tensor product},
language = {eng},
number = {1},
pages = {227-246},
title = {Hilbert modules and tensor products of operator spaces},
url = {http://eudml.org/doc/208632},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Magajna, Bojan
TI - Hilbert modules and tensor products of operator spaces
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 227
EP - 246
AB - The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product $\bar{H}\hat{⨂}H$ is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with $∥ b∥_{cb}=∥ b∥ $. The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.
LA - eng
KW - identification of the predual of ; projective operator space tensor product; Hilbert modules over commutative von Neumann algebras; bounded module homomorphism; completely bounded; projective tensor product of two operator modules; Haagerup tensor product
UR - http://eudml.org/doc/208632
ER -
References
top- [1] P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. (2) 37 (1993), 161-174. Zbl0793.46036
- [2] D. P. Blecher, Tensor products of operator spaces II, Canad. J. Math. 44 (1992), 75-90. Zbl0787.46059
- [3] D. P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), 365-421. Zbl0951.46033
- [4] D. P. Blecher, On selfdual Hilbert modules, to appear in Fields Inst. Commun.
- [5] D. P. Blecher, P. S. Muhly and V. I. Paulsen, Categories of operator modules (Morita equivalence and projective modules), to appear in Mem. Amer. Math. Soc. Zbl0966.46033
- [6] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. Zbl0786.46056
- [7] D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992), 126-144. Zbl0712.46029
- [8] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphisms and strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363. Zbl0362.46043
- [9] A. Chatterjee and A. M. Sinclair, An isometry from the Haagerup tensor product into completely bounded operators, J. Operator Theory 28 (1992), 65-78. Zbl0817.46053
- [10] A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112 (1993), 97-120. Zbl0778.46041
- [11] E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417-448. Zbl0698.46044
- [12] E. G. Effros and R. Exel, On multilinear double commutant theorems, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser. 135 (1988), 81-94. Zbl0698.46049
- [13] E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. (1987), 257-276. Zbl0635.46062
- [14] E. G. Effros and Z.-J. Ruan, Representation of operator bimodules and their applications, J. Operator Theory 19 (1988), 137-157. Zbl0705.46026
- [15] E. G. Effros and Z.-J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), 257-284. Zbl0761.47022
- [16] E. G. Effros and Z.-J. Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. Zbl0769.46037
- [17] E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1993), 579-584. Zbl0808.46026
- [18] E. G. Effros and Z.-J. Ruan, Mapping spaces and liftings for operator spaces, Proc. London Math. Soc. (3) 69 (1994), 171-197. Zbl0814.47053
- [19] H. Halpern, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 183-193. Zbl0183.42202
- [20] K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, Basel, 1991. Zbl1155.19300
- [21] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vols. 1, 2, Academic Press, London, 1983, 1986. Zbl0518.46046
- [22] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858. Zbl0051.09101
- [23] E. C. Lance, Hilbert C*-modules, London Math. Soc. Lecture Note Ser. 210 (1995).
- [24] B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Anal. 129 (1995), 325-348. Zbl0828.46048
- [25] B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc. (3) 74 (1997), 201-240. Zbl0899.46036
- [26] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
- [27] W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. Zbl0239.46062
- [28] V. I. Paulsen, Completely bounded maps and dilations, Research Notes in Math. 146, Pitman, London, 1986. Zbl0614.47006
- [29] C. Pearcy, On unitary equivalence of matrices over the ring of continuous complex-valued functions on a Stonian space, Canad. J. Math. 15 (1963), 323-331. Zbl0144.37704
- [30] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51-96. Zbl0295.46099
- [31] Z. J. Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230. Zbl0646.46055
- [32] A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser. 203 (1995). Zbl0826.46050
- [33] R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175. Zbl0745.46060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.