Hilbert modules and tensor products of operator spaces

Bojan Magajna

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 227-246
  • ISSN: 0137-6934

Abstract

top
The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product H ¯ ^ H is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with b c b = b . The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.

How to cite

top

Magajna, Bojan. "Hilbert modules and tensor products of operator spaces." Banach Center Publications 38.1 (1997): 227-246. <http://eudml.org/doc/208632>.

@article{Magajna1997,
abstract = {The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product $\bar\{H\}\hat\{⨂\}H$ is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with $∥ b∥_\{cb\}=∥ b∥ $. The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.},
author = {Magajna, Bojan},
journal = {Banach Center Publications},
keywords = {identification of the predual of ; projective operator space tensor product; Hilbert modules over commutative von Neumann algebras; bounded module homomorphism; completely bounded; projective tensor product of two operator modules; Haagerup tensor product},
language = {eng},
number = {1},
pages = {227-246},
title = {Hilbert modules and tensor products of operator spaces},
url = {http://eudml.org/doc/208632},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Magajna, Bojan
TI - Hilbert modules and tensor products of operator spaces
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 227
EP - 246
AB - The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product $\bar{H}\hat{⨂}H$ is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with $∥ b∥_{cb}=∥ b∥ $. The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.
LA - eng
KW - identification of the predual of ; projective operator space tensor product; Hilbert modules over commutative von Neumann algebras; bounded module homomorphism; completely bounded; projective tensor product of two operator modules; Haagerup tensor product
UR - http://eudml.org/doc/208632
ER -

References

top
  1. [1] P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. (2) 37 (1993), 161-174. Zbl0793.46036
  2. [2] D. P. Blecher, Tensor products of operator spaces II, Canad. J. Math. 44 (1992), 75-90. Zbl0787.46059
  3. [3] D. P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), 365-421. Zbl0951.46033
  4. [4] D. P. Blecher, On selfdual Hilbert modules, to appear in Fields Inst. Commun. 
  5. [5] D. P. Blecher, P. S. Muhly and V. I. Paulsen, Categories of operator modules (Morita equivalence and projective modules), to appear in Mem. Amer. Math. Soc. Zbl0966.46033
  6. [6] D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. Zbl0786.46056
  7. [7] D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992), 126-144. Zbl0712.46029
  8. [8] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphisms and strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363. Zbl0362.46043
  9. [9] A. Chatterjee and A. M. Sinclair, An isometry from the Haagerup tensor product into completely bounded operators, J. Operator Theory 28 (1992), 65-78. Zbl0817.46053
  10. [10] A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112 (1993), 97-120. Zbl0778.46041
  11. [11] E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417-448. Zbl0698.46044
  12. [12] E. G. Effros and R. Exel, On multilinear double commutant theorems, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser. 135 (1988), 81-94. Zbl0698.46049
  13. [13] E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. (1987), 257-276. Zbl0635.46062
  14. [14] E. G. Effros and Z.-J. Ruan, Representation of operator bimodules and their applications, J. Operator Theory 19 (1988), 137-157. Zbl0705.46026
  15. [15] E. G. Effros and Z.-J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), 257-284. Zbl0761.47022
  16. [16] E. G. Effros and Z.-J. Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337. Zbl0769.46037
  17. [17] E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1993), 579-584. Zbl0808.46026
  18. [18] E. G. Effros and Z.-J. Ruan, Mapping spaces and liftings for operator spaces, Proc. London Math. Soc. (3) 69 (1994), 171-197. Zbl0814.47053
  19. [19] H. Halpern, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 183-193. Zbl0183.42202
  20. [20] K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, Basel, 1991. Zbl1155.19300
  21. [21] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vols. 1, 2, Academic Press, London, 1983, 1986. Zbl0518.46046
  22. [22] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858. Zbl0051.09101
  23. [23] E. C. Lance, Hilbert C*-modules, London Math. Soc. Lecture Note Ser. 210 (1995). 
  24. [24] B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Anal. 129 (1995), 325-348. Zbl0828.46048
  25. [25] B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc. (3) 74 (1997), 201-240. Zbl0899.46036
  26. [26] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990. 
  27. [27] W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. Zbl0239.46062
  28. [28] V. I. Paulsen, Completely bounded maps and dilations, Research Notes in Math. 146, Pitman, London, 1986. Zbl0614.47006
  29. [29] C. Pearcy, On unitary equivalence of matrices over the ring of continuous complex-valued functions on a Stonian space, Canad. J. Math. 15 (1963), 323-331. Zbl0144.37704
  30. [30] M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51-96. Zbl0295.46099
  31. [31] Z. J. Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230. Zbl0646.46055
  32. [32] A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser. 203 (1995). Zbl0826.46050
  33. [33] R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175. Zbl0745.46060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.