A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions

John Strikwerda; Bruce Wade

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 339-360
  • ISSN: 0137-6934

Abstract

top
We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.

How to cite

top

Strikwerda, John, and Wade, Bruce. "A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions." Banach Center Publications 38.1 (1997): 339-360. <http://eudml.org/doc/208640>.

@article{Strikwerda1997,
abstract = {We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.},
author = {Strikwerda, John, Wade, Bruce},
journal = {Banach Center Publications},
keywords = {power-bounded families of matrices; Kreiss matrix theorem; Banach space; Hilbert space},
language = {eng},
number = {1},
pages = {339-360},
title = {A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions},
url = {http://eudml.org/doc/208640},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Strikwerda, John
AU - Wade, Bruce
TI - A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 339
EP - 360
AB - We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.
LA - eng
KW - power-bounded families of matrices; Kreiss matrix theorem; Banach space; Hilbert space
UR - http://eudml.org/doc/208640
ER -

References

top
  1. [1] N. K. Bari, A Treatise on Trigonometric Series, Volume II, 2nd ed., Pergamon Press (1964) Zbl0154.06103
  2. [2] C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, Amer. J. Math. 89 (1967), 1047-1055 Zbl0164.16602
  3. [3] B. Bollobás, The power inequality on Banach spaces, Proc. Cambridge Philos. Soc. 69 (1971), 411-415 Zbl0216.16404
  4. [4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press (1971) Zbl0207.44802
  5. [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press (1973) Zbl0262.47001
  6. [6] P. Brenner and V. Thomée, Stability and convergence rates in L p for certain difference schemes, Math. Scand. 27 (1970), 5-23 Zbl0208.16201
  7. [7] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694 Zbl0413.41011
  8. [8] P. Brenner, V. Thomée, and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer, New York (1975) Zbl0294.35002
  9. [9] M. L. Buchanon, A necessary and sufficient condition for stability of difference schemes for initial value problems, SIAM J. Appl. Math. 11 (1963), 919-935 
  10. [10] M. J. Crabb, Numerical range estimates for the norms of iterated operators, Glasgow Math. J. 11 (1970), 85-87 Zbl0244.47002
  11. [11] M. J. Crabb, The power inequality on normed spaces, Proc. Edinburgh Math. Soc. 17 (1971), 237-240 Zbl0219.47004
  12. [12] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math. 31 (1978), 205-256 Zbl0358.65082
  13. [13] M. Crouzeix, S. Larsson, S. Piskarev and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84 Zbl0783.65050
  14. [14] G. Dahlquist, H. Mingyou, and R. LeVeque, On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods, Numer. Math. 42 (1983), 1-13 Zbl0526.65051
  15. [15] E. B. Davies, One-Parameter Semigroups, Academic Press (1980) Zbl0457.47030
  16. [16] J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numerica (1993), 199-237 Zbl0796.65091
  17. [17] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790 Zbl0124.06602
  18. [18] S. Friedland, A generalization of the Kreiss matrix theorem, SIAM J. Math. Anal. 12 (1981), 826-832 Zbl0467.65013
  19. [19] M. Goldberg and E. Tadmor, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263-284 Zbl0479.47002
  20. [20] M. Gorelick and H. Kranzer, An extension of the Kreiss stability theorem to families of matrices of unbounded order, Linear Algebra Appl. 14 (1976), 237-256 Zbl0339.65020
  21. [21] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM (1977) Zbl0412.65058
  22. [22] P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793 Zbl0123.09701
  23. [23] P. R. Halmos, Ten Problems in Hilbert Space, Bull. Amer. Math. Soc. 76 (1970), 887-933 Zbl0204.15001
  24. [24] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer (1982) 
  25. [25] G. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393-416 
  26. [26] R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial-value problems, SIAM J. Numer. Anal. 16 (1979), 670-682 Zbl0419.65036
  27. [27] T. Kato, Estimation of iterated matrices, with applications to the von Neumann condition, Numer. Math. 2 (1960), 22-29 Zbl0119.32001
  28. [28] T. Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652-655 Zbl0143.36702
  29. [29] J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), 113-119 Zbl0842.15013
  30. [30] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nord. Tidskr. Inf. (BIT) 2 (1962), 153-181 Zbl0109.34702
  31. [31] H.-O. Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109-128 Zbl0145.13303
  32. [32] H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335-353 Zbl0279.35059
  33. [33] E. G. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, in: Das Kontinuum, und andere Monographien, 2nd ed., Chelsea Publishing Company, 1929 Zbl55.0171.03
  34. [34] P. D. Lax and L. Nirenberg, On stability of difference schemes; a sharp form of Gå rding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492 Zbl0185.22801
  35. [35] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266 Zbl0712.15027
  36. [36] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss Matrix Theorem, Math. Comp. 57 (1991), 211-220 Zbl0726.15020
  37. [37] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, ibid. 57 (1991), 221-237 Zbl0727.65072
  38. [38] R. L. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, Nord. Tidskr. Inf. Beh. (BIT) 24 (1984), 584-591 Zbl0559.15018
  39. [39] C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313 Zbl0731.65043
  40. [40] C. A. McCarthy, A strong resolvent condition does not imply power-boundedness, Chalmers Inst. of Tech. and Univ. of Göteborg, preprint # 15 (1971) 
  41. [41] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201 Zbl0151.19401
  42. [42] D. Michelson, Stability theory of difference approximations for multi-dimensional initial-boundary value problems, Math. Comp. 40 (1983), 1-45 Zbl0563.65064
  43. [43] J. J. H. Miller, On power bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396 Zbl0166.41504
  44. [44] J. Miller and G. Strang, Matrix theorems for partial differential equations, Math. Scand. 18 (1966), 113-123 Zbl0144.13404
  45. [45] K. W. Morton, On a matrix theorem due to H.-O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-380 Zbl0146.13702
  46. [46] K. W. Morton and S. Schechter, On the stability of finite difference matrices, SIAM J. Numer. Anal. Ser. B 2 (1965), 119-128 Zbl0133.38101
  47. [47] O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Math., Birkhäuser, Basel (1993) Zbl0846.47008
  48. [48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer (1983) 
  49. [49] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291 Zbl0143.16205
  50. [50] A. Pokrzywa, On an infinite-dimensional version of the Kreiss matrix theorem, in: Numerical Analysis and Mathematical Modelling, Banach Center Publ. 29, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 45-50 Zbl0814.47036
  51. [51] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267 Zbl0734.65077
  52. [52] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley Interscience (1967) Zbl0155.47502
  53. [53] A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374 Zbl0358.47025
  54. [54] H. Shintani and K. Toemeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), 309-78 
  55. [55] M. N. Spijker, On a conjecture by LeVeque and Trefethen, BIT 31 (1991), 551-555 
  56. [56] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif. (1989) 
  57. [57] J. C. Strikwerda and B. A. Wade, An extension of the Kreiss matrix theorem, SIAM J. Numer. Anal. 25 (1988), 1272-1278 Zbl0667.65074
  58. [58] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106 Zbl0724.15021
  59. [59] B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math. (Szeged) 27 (1966), 17-25 Zbl0141.32201
  60. [60] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland (1970) 
  61. [61] E. Tadmor, The equivalence of L 2 -stability, the resolvent condition, and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159 Zbl0469.15011
  62. [62] E. Tadmor, Complex symmetric matrices with strongly stable iterates, ibid. 78 (1986), 65-77 Zbl0591.15018
  63. [63] E. Tadmor, Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time dependent problems, SIAM Rev. 29 (1987), 525-555 Zbl0646.65072
  64. [64] V. Thomée, Stability theory for partial differential operators, ibid. 11 (1969), 152-195 
  65. [65] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press (1979) Zbl0005.21004
  66. [66] B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph.D. dissertation, University of Wisconsin-Madison, 1987 
  67. [67] B. A. Wade, Symmetrizable finite difference operators, Math. Comp. 54 (1990), 525-543 Zbl0697.65069
  68. [68] O. B. Widlund, On the stability of parabolic difference schemes, ibid. 19 (1965), 1-13 Zbl0125.07402
  69. [69] M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its applications, Publ. Res. Inst. Math. Sci. Kyoto University 3 (1967), 151-66 Zbl0182.18601
  70. [70] K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1980 
  71. [71] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385 Zbl0822.47005
  72. [72] A. Zygmund, Trigonometric Series, Volume I, 2nd ed., Cambridge University Press (1968) Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.