A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 339-360
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topStrikwerda, John, and Wade, Bruce. "A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions." Banach Center Publications 38.1 (1997): 339-360. <http://eudml.org/doc/208640>.
@article{Strikwerda1997,
abstract = {We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.},
author = {Strikwerda, John, Wade, Bruce},
journal = {Banach Center Publications},
keywords = {power-bounded families of matrices; Kreiss matrix theorem; Banach space; Hilbert space},
language = {eng},
number = {1},
pages = {339-360},
title = {A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions},
url = {http://eudml.org/doc/208640},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Strikwerda, John
AU - Wade, Bruce
TI - A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 339
EP - 360
AB - We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.
LA - eng
KW - power-bounded families of matrices; Kreiss matrix theorem; Banach space; Hilbert space
UR - http://eudml.org/doc/208640
ER -
References
top- [1] N. K. Bari, A Treatise on Trigonometric Series, Volume II, 2nd ed., Pergamon Press (1964) Zbl0154.06103
- [2] C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, Amer. J. Math. 89 (1967), 1047-1055 Zbl0164.16602
- [3] B. Bollobás, The power inequality on Banach spaces, Proc. Cambridge Philos. Soc. 69 (1971), 411-415 Zbl0216.16404
- [4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press (1971) Zbl0207.44802
- [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press (1973) Zbl0262.47001
- [6] P. Brenner and V. Thomée, Stability and convergence rates in for certain difference schemes, Math. Scand. 27 (1970), 5-23 Zbl0208.16201
- [7] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694 Zbl0413.41011
- [8] P. Brenner, V. Thomée, and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer, New York (1975) Zbl0294.35002
- [9] M. L. Buchanon, A necessary and sufficient condition for stability of difference schemes for initial value problems, SIAM J. Appl. Math. 11 (1963), 919-935
- [10] M. J. Crabb, Numerical range estimates for the norms of iterated operators, Glasgow Math. J. 11 (1970), 85-87 Zbl0244.47002
- [11] M. J. Crabb, The power inequality on normed spaces, Proc. Edinburgh Math. Soc. 17 (1971), 237-240 Zbl0219.47004
- [12] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math. 31 (1978), 205-256 Zbl0358.65082
- [13] M. Crouzeix, S. Larsson, S. Piskarev and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84 Zbl0783.65050
- [14] G. Dahlquist, H. Mingyou, and R. LeVeque, On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods, Numer. Math. 42 (1983), 1-13 Zbl0526.65051
- [15] E. B. Davies, One-Parameter Semigroups, Academic Press (1980) Zbl0457.47030
- [16] J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numerica (1993), 199-237 Zbl0796.65091
- [17] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790 Zbl0124.06602
- [18] S. Friedland, A generalization of the Kreiss matrix theorem, SIAM J. Math. Anal. 12 (1981), 826-832 Zbl0467.65013
- [19] M. Goldberg and E. Tadmor, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263-284 Zbl0479.47002
- [20] M. Gorelick and H. Kranzer, An extension of the Kreiss stability theorem to families of matrices of unbounded order, Linear Algebra Appl. 14 (1976), 237-256 Zbl0339.65020
- [21] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM (1977) Zbl0412.65058
- [22] P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793 Zbl0123.09701
- [23] P. R. Halmos, Ten Problems in Hilbert Space, Bull. Amer. Math. Soc. 76 (1970), 887-933 Zbl0204.15001
- [24] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer (1982)
- [25] G. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393-416
- [26] R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial-value problems, SIAM J. Numer. Anal. 16 (1979), 670-682 Zbl0419.65036
- [27] T. Kato, Estimation of iterated matrices, with applications to the von Neumann condition, Numer. Math. 2 (1960), 22-29 Zbl0119.32001
- [28] T. Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652-655 Zbl0143.36702
- [29] J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), 113-119 Zbl0842.15013
- [30] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nord. Tidskr. Inf. (BIT) 2 (1962), 153-181 Zbl0109.34702
- [31] H.-O. Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109-128 Zbl0145.13303
- [32] H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335-353 Zbl0279.35059
- [33] E. G. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, in: Das Kontinuum, und andere Monographien, 2nd ed., Chelsea Publishing Company, 1929 Zbl55.0171.03
- [34] P. D. Lax and L. Nirenberg, On stability of difference schemes; a sharp form of Gå rding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492 Zbl0185.22801
- [35] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266 Zbl0712.15027
- [36] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss Matrix Theorem, Math. Comp. 57 (1991), 211-220 Zbl0726.15020
- [37] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, ibid. 57 (1991), 221-237 Zbl0727.65072
- [38] R. L. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, Nord. Tidskr. Inf. Beh. (BIT) 24 (1984), 584-591 Zbl0559.15018
- [39] C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313 Zbl0731.65043
- [40] C. A. McCarthy, A strong resolvent condition does not imply power-boundedness, Chalmers Inst. of Tech. and Univ. of Göteborg, preprint # 15 (1971)
- [41] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201 Zbl0151.19401
- [42] D. Michelson, Stability theory of difference approximations for multi-dimensional initial-boundary value problems, Math. Comp. 40 (1983), 1-45 Zbl0563.65064
- [43] J. J. H. Miller, On power bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396 Zbl0166.41504
- [44] J. Miller and G. Strang, Matrix theorems for partial differential equations, Math. Scand. 18 (1966), 113-123 Zbl0144.13404
- [45] K. W. Morton, On a matrix theorem due to H.-O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-380 Zbl0146.13702
- [46] K. W. Morton and S. Schechter, On the stability of finite difference matrices, SIAM J. Numer. Anal. Ser. B 2 (1965), 119-128 Zbl0133.38101
- [47] O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Math., Birkhäuser, Basel (1993) Zbl0846.47008
- [48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer (1983)
- [49] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291 Zbl0143.16205
- [50] A. Pokrzywa, On an infinite-dimensional version of the Kreiss matrix theorem, in: Numerical Analysis and Mathematical Modelling, Banach Center Publ. 29, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 45-50 Zbl0814.47036
- [51] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267 Zbl0734.65077
- [52] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley Interscience (1967) Zbl0155.47502
- [53] A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374 Zbl0358.47025
- [54] H. Shintani and K. Toemeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), 309-78
- [55] M. N. Spijker, On a conjecture by LeVeque and Trefethen, BIT 31 (1991), 551-555
- [56] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif. (1989)
- [57] J. C. Strikwerda and B. A. Wade, An extension of the Kreiss matrix theorem, SIAM J. Numer. Anal. 25 (1988), 1272-1278 Zbl0667.65074
- [58] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106 Zbl0724.15021
- [59] B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math. (Szeged) 27 (1966), 17-25 Zbl0141.32201
- [60] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland (1970)
- [61] E. Tadmor, The equivalence of -stability, the resolvent condition, and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159 Zbl0469.15011
- [62] E. Tadmor, Complex symmetric matrices with strongly stable iterates, ibid. 78 (1986), 65-77 Zbl0591.15018
- [63] E. Tadmor, Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time dependent problems, SIAM Rev. 29 (1987), 525-555 Zbl0646.65072
- [64] V. Thomée, Stability theory for partial differential operators, ibid. 11 (1969), 152-195
- [65] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press (1979) Zbl0005.21004
- [66] B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph.D. dissertation, University of Wisconsin-Madison, 1987
- [67] B. A. Wade, Symmetrizable finite difference operators, Math. Comp. 54 (1990), 525-543 Zbl0697.65069
- [68] O. B. Widlund, On the stability of parabolic difference schemes, ibid. 19 (1965), 1-13 Zbl0125.07402
- [69] M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its applications, Publ. Res. Inst. Math. Sci. Kyoto University 3 (1967), 151-66 Zbl0182.18601
- [70] K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1980
- [71] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385 Zbl0822.47005
- [72] A. Zygmund, Trigonometric Series, Volume I, 2nd ed., Cambridge University Press (1968) Zbl0157.38204
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.