Complementary triangular forms
Banach Center Publications (1997)
- Volume: 38, Issue: 1, page 443-452
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topZuidwijk, Rob. "Complementary triangular forms." Banach Center Publications 38.1 (1997): 443-452. <http://eudml.org/doc/208646>.
@article{Zuidwijk1997,
abstract = {The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs.},
author = {Zuidwijk, Rob},
journal = {Banach Center Publications},
keywords = {simultaneous reduction of pairs of matrices; linear operators; triangular forms},
language = {eng},
number = {1},
pages = {443-452},
title = {Complementary triangular forms},
url = {http://eudml.org/doc/208646},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Zuidwijk, Rob
TI - Complementary triangular forms
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 443
EP - 452
AB - The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs.
LA - eng
KW - simultaneous reduction of pairs of matrices; linear operators; triangular forms
UR - http://eudml.org/doc/208646
ER -
References
top- [1] N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350. Zbl0056.11302
- [2] H. Bart, Transfer functions and operator theory, Linear Algebra Appl. 84 (1986), 33-61. Zbl0612.47013
- [3] H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Oper. Theory: Adv. Appl. 1, Birkhäuser, Basel, 1979. Zbl0424.47001
- [4] H. Bart and H. Hoogland, Complementary triangular forms of pairs of matrices, realizations with prescribed main matrices, and complete factorization of rational matrix functions, Linear Algebra Appl. 103 (1988), 193-228. Zbl0645.15012
- [5] H. Bart and L. G. Kroon, Companion based matrix functions: description and minimal factorization, Linear Algebra Appl. 248 (1996), 1-46. Zbl0862.15017
- [6] H. Bart and L. G. Kroon, Factorization and job scheduling: a connection via companion based rational matrix functions, ibid., to appear. Zbl0862.15018
- [7] H. Bart and L. G. Kroon, Variants of the two machine flow shop problem, European J. Oper. Res., to appear. Zbl0827.90074
- [8] H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of upper triangular Toeplitz matrices, in: Oper. Theory: Adv. Appl. 40, Birkhäuser, 1989, 133-149.
- [9] H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of nonderogatory, Jordan and rank one matrices, Report 9003/B, Econometric Institute, Erasmus University Rotterdam, 1990.
- [10] H. Bart and G. Ph. A. Thijsse, Eigenspace and Jordan-chain techniques for the description of complementary triangular forms, Report 9353/B, Econometric Institute, Erasmus University Rotterdam, 1993.
- [11] H. Bart and H. K. Wimmer, Simultaneous reduction to triangular and companion forms of pairs of matrices: the case rank(I-AZ) = 1, Linear Algebra Appl. 150 (1991), 443-461. Zbl0724.15011
- [12] H. Bart and R. A. Zuidwijk, Triangular forms after extensions with zeroes, submitted. Zbl0941.15004
- [13] M. P. Drazin, J. W. Dungey and K. W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951), 221-228. Zbl0043.25201
- [14] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317. Zbl0267.46012
- [15] S. Friedland, Pairs of matrices which do not admit a complementary triangular form, Linear Algebra Appl. 150 (1990), 119-123. Zbl0757.15005
- [16] G. Frobenius, Über vertauschbare Matrizen, Sitz.-Ber. Akad. Wiss. Berlin 26 (1896), 601-614.
- [17] F. J. Gaines and R. C. Thompson, Sets of nearly triangular matrices, Duke Math. J. 35 (1968), 441-453. Zbl0174.31802
- [18] I. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monographs 24, A.M.S, Providence, R.I., 1969. Zbl0194.43804
- [19] T. J. Laffey, Simultaneous triangularization of a pair of matrices, J. Algebra 44 (1977), 550-557. Zbl0348.15006
- [20] T. J. Laffey, Simultaneous triangularization of matrices--low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978), 269-305. Zbl0399.15008
- [21] T. J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986), 123-138. Zbl0609.15004
- [22] C. Laurie, E. Nordgren, H. Radjavi and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143-155. Zbl0465.47010
- [23] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition with Applications, Academic Press, Orlando, Fla., 1985. Zbl0558.15001
- [24] N. H. McCoy, On the characteristic roots of matric polynomials, Bull. Amer. Math. Soc. 42 (1936), 592-600. Zbl0015.05501
- [25] G. J. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 354-356. Zbl0492.47023
- [26] H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386. Zbl0577.47018
- [27] J. R. Ringrose, Non-Self-Adjoint Compact Linear Operators, van Nostrand, New York, 1971. Zbl0223.47012
- [28] S. H. Tan and J. Vandewalle, On factorizations of rational matrices, IEEE Trans. Circuits and Systems 35 (1988), 1179-1181. Zbl0664.15004
- [29] R. A. Zuidwijk, Complementary triangular forms for pairs of matrices and operators, doctoral thesis, 1994.
- [30] R. A. Zuidwijk, Quasicomplete factorizations for rational matrix functions, Integral Equations Operator Theory, to appear. Zbl0889.15010
- [31] R. A. Zuidwijk, H. Bart and L. Kroon, Quasicomplete factorization and the two machine flow shop problem, Report 9632/B, Econometric Institute, Erasmus University Rotterdam, 1996. Zbl0941.90031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.