An operator-theoretic approach to truncated moment problems

Raúl Curto

Banach Center Publications (1997)

  • Volume: 38, Issue: 1, page 75-104
  • ISSN: 0137-6934

Abstract

top
We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together with the construction of a "functional calculus" for the columns of the associated moment matrix, our operator-theoretic approach allows us to obtain existence theorems for the truncated complex moment problem, in case the columns satisfy one of several natural constraints. We also include an application to the Riemann-quadrature problem from numerical analysis.

How to cite

top

Curto, Raúl. "An operator-theoretic approach to truncated moment problems." Banach Center Publications 38.1 (1997): 75-104. <http://eudml.org/doc/208650>.

@article{Curto1997,
abstract = {We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together with the construction of a "functional calculus" for the columns of the associated moment matrix, our operator-theoretic approach allows us to obtain existence theorems for the truncated complex moment problem, in case the columns satisfy one of several natural constraints. We also include an application to the Riemann-quadrature problem from numerical analysis.},
author = {Curto, Raúl},
journal = {Banach Center Publications},
keywords = {functional calculus; moment problems; quadratic hyponormality; unilateral weighted shifts; polynomially hyponormal operators; matrix positivity; extension; Riemann-quadrature problem},
language = {eng},
number = {1},
pages = {75-104},
title = {An operator-theoretic approach to truncated moment problems},
url = {http://eudml.org/doc/208650},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Curto, Raúl
TI - An operator-theoretic approach to truncated moment problems
JO - Banach Center Publications
PY - 1997
VL - 38
IS - 1
SP - 75
EP - 104
AB - We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together with the construction of a "functional calculus" for the columns of the associated moment matrix, our operator-theoretic approach allows us to obtain existence theorems for the truncated complex moment problem, in case the columns satisfy one of several natural constraints. We also include an application to the Riemann-quadrature problem from numerical analysis.
LA - eng
KW - functional calculus; moment problems; quadratic hyponormality; unilateral weighted shifts; polynomially hyponormal operators; matrix positivity; extension; Riemann-quadrature problem
UR - http://eudml.org/doc/208650
ER -

References

top
  1. [Agl] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), 203-217. 
  2. [AK] N. I. Ahiezer and M. G. Krein, Some Questions in the Theory of Moments, Transl. Math. Monographs 2, Amer. Math. Soc., Providence, 1962. 
  3. [Akh] N. I. Akhiezer, The Classical Moment Problem, Hafner, New York, 1965. 
  4. [And] T. Ando, Truncated moment problems for operators, Acta Sci. Math. (Szeged) 31 (1970), 319-333. Zbl0202.13403
  5. [Atz] A. Atzmon, A moment problem for positive measures on the unit disc, Pacific J. Math. 59 (1975), 317-325. Zbl0319.44009
  6. [Ber] C. Berg, The multidimensional moment problem and semigroups, in: Moments in Mathematics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 110-124. 
  7. [BCJ] C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment problem, Math. Ann. 223 (1979), 163-169. Zbl0416.46003
  8. [BeM] C. Berg and P. H. Maserick, Polynomially positive definite sequences, ibid. 259 (1982), 487-495. Zbl0486.44004
  9. [Bra] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. 
  10. [Cas] G. Cassier, Problème des moments sur un compact de R n et décomposition des polynômes à plusieurs variables, J. Funct. Anal. 58 (1984), 254-266. Zbl0556.44006
  11. [Con] J. B. Conway, Subnormal Operators, Pitman, London, 1981 
  12. [CoC] M. Cotlar and R. Cignoli, An Introduction to Functional Analysis, North-Holland, Amsterdam, 1974. Zbl0277.46001
  13. [Cu1] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990), 49-66. Zbl0702.47011
  14. [Cu2] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, in: Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 69-91. Zbl0713.47019
  15. [Cu3] R. Curto, Polynomially hyponormal operators on Hilbert space, Rev. Un. Mat. Argentina 37 (1991), 29-56. Zbl0815.47024
  16. [CuF1] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246. Zbl0804.47028
  17. [CuF2] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, ibid. 18 (1994), 369-426. Zbl0807.47016
  18. [CuF3] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston J. Math. 17 (1991), 603-635. Zbl0757.44006
  19. [CuF4] R. Curto and L. Fialkow, Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc. 119 (1996). Zbl0876.30033
  20. [CuF5] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Relations in analytic or conjugate terms, in: Oper. Theory Adv. Appl., to appear. 
  21. [CuF6] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Recursively generated relations, Mem. Amer. Math. Soc., to appear. Zbl0913.47016
  22. [CMX] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, in: Oper. Theory Adv. Appl. 35, Birkhäuser, 1988, 1-22. 
  23. [CuP1] R. Curto and M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. 25 (1991), 373-378. Zbl0758.47027
  24. [CuP2] R. Curto and M. Putinar, Nearly subnormal operators and moment problems, J. Funct. Anal. 115 (1993), 480-497. Zbl0817.47026
  25. [Fan] P. Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), 271-272. Zbl0509.47023
  26. [Fia] L. Fialkow, Positivity, extensions and the truncated complex moment problem, in: Contemp. Math. 185, Amer. Math. Soc., 1995, 133-150. Zbl0830.44007
  27. [Fug] B. Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), 47-65. Zbl0514.44006
  28. [Hal] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 124-134. 
  29. [Hau] F. Hausdorff, Momentprobleme für ein endliches Intervall, Math. Z. 16 (1923), 220-248. Zbl49.0193.01
  30. [Hav1] E. K. Haviland, On the momentum problem for distributions in more than one dimension, Amer. J. Math. 57 (1935), 562-568. Zbl0013.05904
  31. [Hav2] E. K. Haviland, On the momentum problem for distributions in more than one dimension, Part II, ibid. 58 (1936), 164-168. 
  32. [Hil] D. Hilbert, Über die Darstellung definiter Formen als Summen von Formenquadraten, Math. Ann. 32 (1888), 342-350. Zbl20.0198.02
  33. [JeL] N. Jewell and A. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979), 207-223. Zbl0431.47016
  34. [Jos1] A. Joshi, Hyponormal polynomials of monotone shifts, Ph.D. dissertation, Purdue University, 1971. 
  35. [Jos2] A. Joshi, Hyponormal polynomials of monotone shifts, Indian J. Pure Appl. Math. 6 (1975), 681-686. Zbl0355.47014
  36. [KrN] M. G. Krein and A. Nudel'man, The Markov Moment Problem and Extremal Problems, Transl. Math. Monographs 50, Amer. Math. Soc., Providence, 1977. 
  37. [Lan] H. Landau, Classical background of the moment problem, in: Moments in Mathema- tics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 1-15. 
  38. [Li] X. Li, On positive moment sequences, Ph.D. dissertation, Virginia Tech. Univ., 1993. 
  39. [McC] J. McCarthy, private communication. 
  40. [McCY] J. McCarthy and L. Yang, Subnormal operators and quadrature domains, preprint, 1995. 
  41. [McCP] S. McCullough and V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989), 187-195. Zbl0677.47018
  42. [McG] J. L. McGregor, Solvability criteria for certain N-dimensional moment problems, J. Approx. Theory 30 (1980), 315-333. Zbl0458.41025
  43. [Mys] I. P. Mysovskikh, On Chakalov's Theorem, USSR Comp. Math. 15 (1975), 221-227. 
  44. [Nar] F. J. Narcowich, R-operators II. On the approximation of certain operator-valued analytic functions and the Hermitian moment problem, Indiana Univ. Math. J. 26 (1977), 483-513. 
  45. [Pru] B. Prunaru, Invariant subspaces for polynomially hyponormal operators, preprint, 1995. 
  46. [Pu1] M. Putinar, A two-dimensional moment problem, J. Funct. Anal. 80 (1988), 1-8. 
  47. [Pu2] M. Putinar, The L problem of moments in two dimensions, ibid. 94 (1990), 288-307. 
  48. [Pu3] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), 969-984. Zbl0796.12002
  49. [Pu4] M. Putinar, Extremal solutions of the two-dimensional L-problem of moments, J. Funct. Anal. 136 (1996), 331-364. Zbl0917.47014
  50. [Pu5] M. Putinar, Quadrature domains and hyponormal operators, lecture at SEAM XI, Georgia Tech. Univ., Atlanta, 1995. 
  51. [Pu6] M. Putinar, On Tchakaloff's Theorem, preprint, 1995. 
  52. [Rez1] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 463 (1992). Zbl0762.11019
  53. [Rez2] B. Reznick, e-mail communication. 
  54. [Sar] D. Sarason, Moment problems and operators on Hilbert space, in: Moments in Mathematics, Proc. Sympos. Appl. Math. 37, Amer. Math. Soc., 1987, 54-70. 
  55. [Sch1] K. Schmüdgen, An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional, Math. Nachr. 88 (1979), 385-390. Zbl0424.46041
  56. [Sch2] K. Schmüdgen, The K-moment problem for semi-algebraic sets, Math. Ann. 289 (1991), 203-206. Zbl0744.44008
  57. [SeS] Z. Sebestyén and J. Stochel, Restrictions of positive self-adjoint operators, Acta Sci. Math. (Szeged) 55 (1991), 149-154. Zbl0897.47015
  58. [ShT] J. Shohat and J. Tamarkin, The Problem of Moments, Math. Surveys 1, Amer. Math. Soc., Providence, 1943. 
  59. [Smu] J. L. Smul'jan, An operator Hellinger integral, Mat. Sb. 91 (1959), 381-430 (in Russian). 
  60. [Sta] J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379. Zbl0189.43902
  61. [StSz1] J. Stochel and F. H. Szafraniec, A characterization of subnormal operators, in: Spectral Theory of Linear Operators and Related Topics, Birkhäuser, 1984, 261-263. 
  62. [StSz2] J. Stochel and F. H. Szafraniec, Unbounded weighted shifts and subnormality, Integral Equations Operator Theory 12 (1989), 146-153. Zbl0675.47011
  63. [StSz3] J. Stochel and F. H. Szafraniec, On normal extensions of unbounded operators, III. Spectral properties, Publ. RIMS 25 (1989), 105-139. Zbl0721.47009
  64. [StSz4] J. Stochel and F. H. Szafraniec, Algebraic operators and moments on algebraic sets, Portugal. Math. 51 (1994), 1-21. Zbl0815.47058
  65. [Str] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, 1971. Zbl0379.65013
  66. [Sza1] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: An application to moment problems, Ark. Mat. 19 (1981), 251-259. Zbl0504.47030
  67. [Sza2] F. H. Szafraniec, Moments on compact sets, in: Prediction Theory and Harmonic Analysis, V. Mandrekar and H. Salehi (eds.), North-Holland, Amsterdam, 1983, 379-385. 
  68. [Tch] V. Tchakaloff, Formules de cubatures mécaniques à coefficients non négatifs, Bull. Sci. Math. 81 (1957), 123-134. Zbl0079.13908
  69. [Wol] Wolfram Research, Inc., Mathematica, Version 2.1, Champaign, Illinois, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.