A gauge-field approach to 3- and 4-manifold invariants
Banach Center Publications (1997)
- Volume: 39, Issue: 1, page 201-209
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Bro1] B. Broda, A surgical invariant of 4-manifolds, Proc. Conf. on Quantum Topology, Kansas 1993, D. N. Yetter (ed.), World Scientific, Singapore, 1994, 45-50.
- [Bro2] B. Broda, TQFT versus RCFT: 3-D topological invariants, Modern Phys. Lett. A 10 (1995), 331-336. Zbl1020.57501
- [Bro3] B. Broda, Chern-Simons approach to three-manifold invariants, Modern Phys. Lett. A 10 (1995), 487-493. Zbl1020.57502
- [CdS] E. César de Sá, A link calculus for 4-manifolds, Topology of low-dimensional manifolds, Proc. Sec. Conf. Sussex, Lecture Notes in Math. 722, Springer, Berlin, 1979, 16-30.
- [CKY1] L. Crane, L. H. Kauffman and D. Yetter, Invariants at Principal and Non-principal Roots of Unity, Adv. Appl. Clifford Algebras 3 (1993), 223.
- [CKY2] L. Crane, L. H. Kauffman and D. Yetter, On the Classicality of Broda's SU(2) Invariants of 4-Manifolds, Adv. Appl. Clifford Algebras 3 (1993), 223. Zbl0856.57014
- [CY] L. Crane and D. Yetter, A categorical construction of 4d topological quantum field theories, Quantum Topology, L. Kauffman and R. Baadhio (eds.), World Scientific, Singapore, 1993. Zbl0841.57030
- [Oht] T. Ohtsuki, A polynomial invariant of integral homology 3-spheres, Math. Proc. Cambridge Philos. Soc. 117 (1995), 83-112. Zbl0843.57019
- [RT] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. Zbl0725.57007
- [Rol] D. Rolfsen, Knots and Links, Publish or Perish, Wilmington, 1976, Chapt. 9.
- [TV] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992), 865-902. Zbl0779.57009
- [Wit1] E. Witten, Quantum Field Theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. Zbl0667.57005
- [Wit2] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796. Zbl0867.57029