Quantum Fibre Bundles. An Introduction

Tomasz Brzeziński

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 211-223
  • ISSN: 0137-6934

Abstract

top
An approach to construction of a quantum group gauge theory based on the quantum group generalisation of fibre bundles is reviewed.

How to cite

top

Brzeziński, Tomasz. "Quantum Fibre Bundles. An Introduction." Banach Center Publications 39.1 (1997): 211-223. <http://eudml.org/doc/208664>.

@article{Brzeziński1997,
abstract = {An approach to construction of a quantum group gauge theory based on the quantum group generalisation of fibre bundles is reviewed.},
author = {Brzeziński, Tomasz},
journal = {Banach Center Publications},
keywords = {survey; principle quantum bundles},
language = {eng},
number = {1},
pages = {211-223},
title = {Quantum Fibre Bundles. An Introduction},
url = {http://eudml.org/doc/208664},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Brzeziński, Tomasz
TI - Quantum Fibre Bundles. An Introduction
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 211
EP - 223
AB - An approach to construction of a quantum group gauge theory based on the quantum group generalisation of fibre bundles is reviewed.
LA - eng
KW - survey; principle quantum bundles
UR - http://eudml.org/doc/208664
ER -

References

top
  1. [1] R. J. Blattner, M. Cohen and S. Montgomery, Crossed Products and Inner Actions of Hopf Algebras, Trans. Amer. Math. Soc. 298 (1986), 671. Zbl0619.16004
  2. [2] R. J. Blattner and S. Montgomery, Crossed Products and Galois Extensions of Hopf Algebras, Pacific J. Math. 137 (1989), 37. Zbl0675.16017
  3. [3] T. Brzeziński, Differential Geometry of Quantum Groups and Quantum Fibre Bundles, University of Cambridge, Ph.D. thesis, 1994. 
  4. [4] T. Brzeziński, Remarks on Quantum Principal Bundles, in: Quantum Groups. Formalism and Applications, J. Lukierski, Z. Popowicz and J. Sobczyk, eds. Polish Scientific Publishers PWN, 1995, p. 3. Zbl0877.58004
  5. [5] T. Brzeziński, Translation Map in Quantum Principal Bundles, preprint (1994) hep-th/9407145, J. Geom. Phys. to appear. 
  6. [6] T. Brzeziński, Quantum Homogeneous Spaces as Quantum Quotient Spaces, preprint (1995) q-alg/9509015. Zbl0878.17011
  7. [7] T. Brzeziński and S. Majid, Quantum Group Gauge Theory on Quantum Spaces, Comm. Math. Phys. 157 (1993), 591; ibid. 167 (1995), 235 (erratum). Zbl0817.58003
  8. [8] T. Brzeziński and S. Majid, Quantum Group Gauge Theory on Classical Spaces, Phys. Lett. B 298 (1993), 339. Zbl0817.58003
  9. [9] T. Brzeziński and S. Majid, Coalgebra Gauge Theory, Preprint DAMTP/95-74, 1995. 
  10. [10] R. J. Budzyński and W. Kondracki, Quantum principal fiber bundles: topological aspects, preprint (1994) hep-th/9401019. 
  11. [11] C.-S. Chu, P.-M. Ho and H. Steinacker, Q-deformed Dirac monopole with arbitrary charge, preprint (1994) hep-th/9404023. 
  12. [12] A. Connes, Non-Commutative Geometry, Academic Press, 1994. 
  13. [13] A. Connes, A lecture given at the Conference on Non-commutative Geometry and Its Applications, Castle Třešť, Czech Republic, May 1995. 
  14. [14] A. Connes and M. Rieffel, Yang-Mills for Non-Commutative Two-Tori, Contemp. Math. 62 (1987), 237. 
  15. [15] Y. Doi, Equivalent Crossed Products for a Hopf Algebra, Comm. Algebra 17 (1989), 3053. Zbl0687.16008
  16. [16] Y. Doi and M. Takeuchi, Cleft Module Algebras and Hopf Modules, Comm. Algebra 14 (1986), 801. Zbl0589.16011
  17. [17] V. G. Drinfeld, Quantum Groups, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, Vol. 1, Academic Press, 1986, p. 798. 
  18. [18] T. Eguchi, P. Gilkey and A. Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rep. 66 (1980), 213. 
  19. [19] P. M. Hajac, Strong Connections and U q ( 2 ) -Yang-Mills Theory on Quantum Principal Bundles, preprint (1994) hep-th/9406129. 
  20. [20] D. Husemoller, Fibre Bundles, Springer-Verlag, 3rd ed. 1994. 
  21. [21] D. Kastler, Cyclic Cohomology within Differential Envelope, Hermann, 1988. Zbl0662.55001
  22. [22] E. Kunz, Kähler Differentials, Vieweg & Sohn, 1986. 
  23. [23] S. Majid, Cross Product Quantisation, Nonabelian Cohomology and Twisting of Hopf Algebras, in: Generalised Symmetries in Physics, H.-D. Doebner, V. K. Dobrev and A. G. Ushveridze, eds., World Scientific, 1994, p. 13. 
  24. [24] U. Meyer, Projective Quantum Spaces, Lett. Math. Phys. 35 (1995), 91. 
  25. [25] M. Pflaum, Quantum Groups on Fibre Bundles, Comm. Math. Phys. 166 (1994), 279. Zbl0824.58009
  26. [26] P. Podleś, Quantum Spheres, Lett. Math. Phys. 14 (1987), 193. 
  27. [27] H.-J. Schneider, Principal Homogeneous Spaces for Arbitrary Hopf Algebras, Israel J. Math. 72 (1990), 167. Zbl0731.16027
  28. [28] M. E. Sweedler, Hopf Algebras, Benjamin, 1969. 
  29. [29] M. E. Sweedler, Cohomology of Algebras over Hopf Algebras, Trans. Amer. Math. Soc. 133 (1968), 205. 
  30. [30] S. L. Woronowicz, Twisted S U 2 Group. An Example of a Non-commutative Differential Calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117. 
  31. [31] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys. 122 (1989), 125. Zbl0751.58042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.