The metric in gauge theory: an introduction and some applications
Banach Center Publications (1997)
- Volume: 39, Issue: 1, page 317-329
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topGroisser, David. "The $L^2$ metric in gauge theory: an introduction and some applications." Banach Center Publications 39.1 (1997): 317-329. <http://eudml.org/doc/208670>.
@article{Groisser1997,
abstract = {We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces with respect to the $L^2$ metric. We also consider an application to a de Rham-theoretic version of Donaldson’s μ-map.},
author = {Groisser, David},
journal = {Banach Center Publications},
keywords = {moduli space of Yang-Mills connections; metric; Pontryagin index; intersection form; collar region},
language = {eng},
number = {1},
pages = {317-329},
title = {The $L^2$ metric in gauge theory: an introduction and some applications},
url = {http://eudml.org/doc/208670},
volume = {39},
year = {1997},
}
TY - JOUR
AU - Groisser, David
TI - The $L^2$ metric in gauge theory: an introduction and some applications
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 317
EP - 329
AB - We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces with respect to the $L^2$ metric. We also consider an application to a de Rham-theoretic version of Donaldson’s μ-map.
LA - eng
KW - moduli space of Yang-Mills connections; metric; Pontryagin index; intersection form; collar region
UR - http://eudml.org/doc/208670
ER -
References
top- [CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975. Zbl0309.53035
- [DMM] H. Doi, Y. Matsumoto, and T. Matumoto, An explicit formula of the metric on the moduli space of BPST-instantons over , in: A Fête of Topology, Academic Press, 1987, 543-556.
- [D1] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315. Zbl0507.57010
- [D2] S. K. Donaldson, Compactification and completion of Yang-Mills moduli spaces, in: Differential Geometry, Proc. Conf. Peniscola 1988, F. J. Carreras et al. (ed.), Lecture Notes in Math. 1410, Springer, Berlin, 1989, 145-160.
- [DK] S. K. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, New York, 1990. Zbl0820.57002
- [F] P. Feehan, Geometry of the ends of the moduli space of anti-self-dual connections, J. Differential Geom. 42 (1995), 465-553. Zbl0856.58007
- [FU] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, second edition, Springer, New York, 1991. Zbl0559.57001
- [G1] D. Groisser, The geometry of the moduli space of instantons, Invent. Math. 99 (1990), 393-409.
- [G2] D. Groisser, Curvature of Yang-Mills moduli spaces near the boundary, I, Comm. Anal. Geom. 1 (1993), 139-216. Zbl0846.58012
- [G3] D. Groisser, Totally geodesic boundaries of Yang-Mills moduli spaces, Preprint, 1996.
- [GP1] D. Groisser and T. H. Parker, The Riemannian geometry of the Yang-Mills Moduli Space, Comm. Math. Phys. 112 (1987), 663-689. Zbl0637.53037
- [GP2] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Differential Geom. 29 (1989), 499-544. Zbl0679.53024
- [GP3] D. Groisser and T. H. Parker, Semiclassical Yang-Mills Theory I, Instantons, Comm. Math. Phys. 135 (1990), 101-140. Zbl0792.53024
- [GP4] D. Groisser and T. H. Parker, Differential forms on the Yang-Mills moduli space, in preparation.
- [GS] D. Groisser and L. Sadun, Simple type and the boundary of moduli space, in preparation. Zbl0973.57014
- [H] L. Habermann, On the geometry of the space of Sp(1)-instantons with Pontrjagin index 1 on the 4-sphere, Ann. Global Anal. Geom. 6 (1988), 3-29. Zbl0667.53053
- [K] K. Kobayashi, Three Riemannian metrics on the moduli space of 1-instantons over , Hiroshima Math. J. 19 (1989), 243-249. Zbl0715.53028
- [MM] K. B. Marathe and G. Martucci, The Mathematical Foundations of Gauge Theories, North-Holland, Amsterdam, 1992. Zbl0920.58079
- [M] T. Matumoto, Three Riemannian metrics on the moduli space of BPST-instantons over , Hiroshima Math. J. 19 (1989), 221-224. Zbl0736.58006
- [MV] P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457-472. Zbl0474.58004
- [S] I. M. Singer, The Geometry of the Orbit Space for Nonabelian Gauge Theories, Phys. Scripta 24 (1981), 817-820. Zbl1063.81623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.