Schwinger terms, gerbes, and operator residues
Banach Center Publications (1997)
- Volume: 39, Issue: 1, page 345-361
- ISSN: 0137-6934
Access Full Article
topHow to cite
topMickelsson, Jouko. "Schwinger terms, gerbes, and operator residues." Banach Center Publications 39.1 (1997): 345-361. <http://eudml.org/doc/208673>.
@article{Mickelsson1997,
author = {Mickelsson, Jouko},
journal = {Banach Center Publications},
keywords = {renormalization; chiral anomalies; Hamiltonian quantization; quantized current algebra; Lie algebra of pseudodifferential operators; Radul cocycle},
language = {eng},
number = {1},
pages = {345-361},
title = {Schwinger terms, gerbes, and operator residues},
url = {http://eudml.org/doc/208673},
volume = {39},
year = {1997},
}
TY - JOUR
AU - Mickelsson, Jouko
TI - Schwinger terms, gerbes, and operator residues
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 345
EP - 361
LA - eng
KW - renormalization; chiral anomalies; Hamiltonian quantization; quantized current algebra; Lie algebra of pseudodifferential operators; Radul cocycle
UR - http://eudml.org/doc/208673
ER -
References
top- [Ar] H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in: Operator algebras and mathematical physics, Contemp. Math. 62, Amer. Math. Soc., Providence, 1987, 23-141.
- [APS] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry, I-III, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69; 78 (1975), 405-432; 79 (1976), 71-79. Zbl0297.58008
- [AS] M. F. Atiyah, I. M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 2597-2600. Zbl0547.58033
- [Br] J.-L. Brylinski, Loop Spaces, Characteristic Classes, and Geometric Quantization, Birkhäuser, Boston-Basel-Berlin, 1993.
- [CaMiMu] A. L. Carey, J. Mickelsson, M. Murray, Index theory, gerbes, and quantization, Comm. Math. Phys. (to appear); hep-th/9511151.
- [CaMu] A. L. Carey and M. K. Murray, Mathematical remarks on the cohomology of gauge groups and anomalies, Internat. J. Modern Phys. A (to appear); hep-th/9408141.
- [CaMu1] A. L. Carey and M. K. Murray, Faddeev's anomaly and bundle gerbes, Lett. Math. Phys. 37 (1996), 29-36. Zbl0848.22024
- [CaMuWa] A. L. Carey, M. K. Murray and B. Wang, Higher bundle gerbes, descent equations and 3-Cocycles, preprint 1995.
- [CFNW] M. Cederwall, G. Ferretti, B. Nilsson, and A. Westerberg, Schwinger terms and cohomology of pseudodifferential operators, Comm. Math. Phys. 175 (1996), 203-220; hep-th/9410016. Zbl0853.35140
- [Co] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
- [F] L. Faddeev, Operator anomaly for the Gauss law, Phys. Lett. B 145 (1984), 81.
- [F-Sh] L. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies, Theoret. Math. Phys. 60 (1984), 770.
- [Fr] L. Friedlander, Ph.D. thesis, Dept. of Math., M.I.T., 1989.
- [Gu] V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), 131. Zbl0559.58025
- [Hö] L. Hörmander, The Analysis of Partial Differential Operators, III, Springer, Berlin, 1985.
- [KoVi] M. Kontsevich, S. Vishik, Determinants of elliptic pseudo-differential operators, hep-th/9404046.
- [KrKh] O. S. Kravchenko and B. A. Khesin, A nontrivial central extension of the Lie algebra of pseudodifferential symbols on the circle, Functional Anal. Appl. 25 (1991), 83.
- [La1] E. Langmann, Noncommutative integration calculus, J. Math. Phys. 36 (1995), 3822-3835. Zbl0856.46045
- [La2] E. Langmann, Descent equations of Yang-Mills anomalies in noncommutative geometry, hep-th/9508003.
- [LaMi] E. Langmann and J. Mickelsson, Scattering matrix in external fields, J. Math. Phys. 37 (1996), 3933-3953. Zbl0885.47029
- [Lu] L.-E. Lundberg, Quasi-free second quantization, Comm. Math. Phys. 50 (1976), 103. Zbl0336.46062
- [Mi1] J. Mickelsson, On the hamiltonian approach to commutator anomalies in 3+1 dimensions, Phys. Lett. 241 (1990), 70-76.
- [Mi2] J. Mickelsson, Wodzicki residue and anomalies of current algebras, in: Integrable models and strings, ed. A. Alekseev et al., Lecture Notes in Phys. 436, Springer, Berlin, 1994, 123-135. Zbl0824.17028
- [Mi3] J. Mickelsson, Chiral anomalies in even and odd dimensions, Comm. Math. Phys. 97 (1985), 361-370. Zbl1223.81143
- [Mi4] J. Mickelsson, Current Algebras and Groups, Plenum Press, London and New York, 1989.
- [MiRa] J. Mickelsson and S. Rajeev, Current algebras in d+1 dimensions and determinant bundles over infinite-dimensional Grassmannians, Comm. Math. Phys. 116 (1988), 365-400. Zbl0648.22013
- [Mu] M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) (to appear); dg-ga/9407015.
- [Pa] J. Palmer, Scattering automorphisms of the Dirac field, J. Math. Anal. Appl. 64 (1978), 189.
- [Ra] A. O. Radul, Lie algebras of differential operators, their central extensions, and W-algebras, Functional Anal. Appl. 25 (1991), 33.
- [Ru] S. N. M. Ruijsenaars, Gauge dependence and implementability of the S-operator for spin-0 and spin- particles in time-dependent external fields, J. Funct. Anal. 33 (1979), 47.
- [Se] G. Segal, unpublished preprint, Dept. of Math., Oxford University, 1985.
- [Wo] M. Wodzicki, Noncommutative residue. I: Fundamentals, in: K-theory, arithmetic and geometry, ed. Yu. I. Manin, Lecture Notes in Math. 1289, Springer, Berlin, 1984, 320-399.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.