Schwinger terms, gerbes, and operator residues

Jouko Mickelsson

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 345-361
  • ISSN: 0137-6934

How to cite

top

Mickelsson, Jouko. "Schwinger terms, gerbes, and operator residues." Banach Center Publications 39.1 (1997): 345-361. <http://eudml.org/doc/208673>.

@article{Mickelsson1997,
author = {Mickelsson, Jouko},
journal = {Banach Center Publications},
keywords = {renormalization; chiral anomalies; Hamiltonian quantization; quantized current algebra; Lie algebra of pseudodifferential operators; Radul cocycle},
language = {eng},
number = {1},
pages = {345-361},
title = {Schwinger terms, gerbes, and operator residues},
url = {http://eudml.org/doc/208673},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Mickelsson, Jouko
TI - Schwinger terms, gerbes, and operator residues
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 345
EP - 361
LA - eng
KW - renormalization; chiral anomalies; Hamiltonian quantization; quantized current algebra; Lie algebra of pseudodifferential operators; Radul cocycle
UR - http://eudml.org/doc/208673
ER -

References

top
  1. [Ar] H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, in: Operator algebras and mathematical physics, Contemp. Math. 62, Amer. Math. Soc., Providence, 1987, 23-141. 
  2. [APS] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry, I-III, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69; 78 (1975), 405-432; 79 (1976), 71-79. Zbl0297.58008
  3. [AS] M. F. Atiyah, I. M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), 2597-2600. Zbl0547.58033
  4. [Br] J.-L. Brylinski, Loop Spaces, Characteristic Classes, and Geometric Quantization, Birkhäuser, Boston-Basel-Berlin, 1993. 
  5. [CaMiMu] A. L. Carey, J. Mickelsson, M. Murray, Index theory, gerbes, and quantization, Comm. Math. Phys. (to appear); hep-th/9511151. 
  6. [CaMu] A. L. Carey and M. K. Murray, Mathematical remarks on the cohomology of gauge groups and anomalies, Internat. J. Modern Phys. A (to appear); hep-th/9408141. 
  7. [CaMu1] A. L. Carey and M. K. Murray, Faddeev's anomaly and bundle gerbes, Lett. Math. Phys. 37 (1996), 29-36. Zbl0848.22024
  8. [CaMuWa] A. L. Carey, M. K. Murray and B. Wang, Higher bundle gerbes, descent equations and 3-Cocycles, preprint 1995. 
  9. [CFNW] M. Cederwall, G. Ferretti, B. Nilsson, and A. Westerberg, Schwinger terms and cohomology of pseudodifferential operators, Comm. Math. Phys. 175 (1996), 203-220; hep-th/9410016. Zbl0853.35140
  10. [Co] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. 
  11. [F] L. Faddeev, Operator anomaly for the Gauss law, Phys. Lett. B 145 (1984), 81. 
  12. [F-Sh] L. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies, Theoret. Math. Phys. 60 (1984), 770. 
  13. [Fr] L. Friedlander, Ph.D. thesis, Dept. of Math., M.I.T., 1989. 
  14. [Gu] V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), 131. Zbl0559.58025
  15. [Hö] L. Hörmander, The Analysis of Partial Differential Operators, III, Springer, Berlin, 1985. 
  16. [KoVi] M. Kontsevich, S. Vishik, Determinants of elliptic pseudo-differential operators, hep-th/9404046. 
  17. [KrKh] O. S. Kravchenko and B. A. Khesin, A nontrivial central extension of the Lie algebra of pseudodifferential symbols on the circle, Functional Anal. Appl. 25 (1991), 83. 
  18. [La1] E. Langmann, Noncommutative integration calculus, J. Math. Phys. 36 (1995), 3822-3835. Zbl0856.46045
  19. [La2] E. Langmann, Descent equations of Yang-Mills anomalies in noncommutative geometry, hep-th/9508003. 
  20. [LaMi] E. Langmann and J. Mickelsson, Scattering matrix in external fields, J. Math. Phys. 37 (1996), 3933-3953. Zbl0885.47029
  21. [Lu] L.-E. Lundberg, Quasi-free second quantization, Comm. Math. Phys. 50 (1976), 103. Zbl0336.46062
  22. [Mi1] J. Mickelsson, On the hamiltonian approach to commutator anomalies in 3+1 dimensions, Phys. Lett. 241 (1990), 70-76. 
  23. [Mi2] J. Mickelsson, Wodzicki residue and anomalies of current algebras, in: Integrable models and strings, ed. A. Alekseev et al., Lecture Notes in Phys. 436, Springer, Berlin, 1994, 123-135. Zbl0824.17028
  24. [Mi3] J. Mickelsson, Chiral anomalies in even and odd dimensions, Comm. Math. Phys. 97 (1985), 361-370. Zbl1223.81143
  25. [Mi4] J. Mickelsson, Current Algebras and Groups, Plenum Press, London and New York, 1989. 
  26. [MiRa] J. Mickelsson and S. Rajeev, Current algebras in d+1 dimensions and determinant bundles over infinite-dimensional Grassmannians, Comm. Math. Phys. 116 (1988), 365-400. Zbl0648.22013
  27. [Mu] M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) (to appear); dg-ga/9407015. 
  28. [Pa] J. Palmer, Scattering automorphisms of the Dirac field, J. Math. Anal. Appl. 64 (1978), 189. 
  29. [Ra] A. O. Radul, Lie algebras of differential operators, their central extensions, and W-algebras, Functional Anal. Appl. 25 (1991), 33. 
  30. [Ru] S. N. M. Ruijsenaars, Gauge dependence and implementability of the S-operator for spin-0 and spin- 1 2 particles in time-dependent external fields, J. Funct. Anal. 33 (1979), 47. 
  31. [Se] G. Segal, unpublished preprint, Dept. of Math., Oxford University, 1985. 
  32. [Wo] M. Wodzicki, Noncommutative residue. I: Fundamentals, in: K-theory, arithmetic and geometry, ed. Yu. I. Manin, Lecture Notes in Math. 1289, Springer, Berlin, 1984, 320-399. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.