String picture of gauge fields

Jacek Pawełczyk

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 363-371
  • ISSN: 0137-6934

Abstract

top
The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.

How to cite

top

Pawełczyk, Jacek. "String picture of gauge fields." Banach Center Publications 39.1 (1997): 363-371. <http://eudml.org/doc/208674>.

@article{Pawełczyk1997,
abstract = {The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.},
author = {Pawełczyk, Jacek},
journal = {Banach Center Publications},
keywords = {Yang-Mills theory; string theory; moduli space of branched coverings; Hurwitz space},
language = {eng},
number = {1},
pages = {363-371},
title = {String picture of gauge fields},
url = {http://eudml.org/doc/208674},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Pawełczyk, Jacek
TI - String picture of gauge fields
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 363
EP - 371
AB - The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.
LA - eng
KW - Yang-Mills theory; string theory; moduli space of branched coverings; Hurwitz space
UR - http://eudml.org/doc/208674
ER -

References

top
  1. [1] M. F. Atiyah and L. Jeffrey, Topological lagrangians and cohomology, J. Geom. Phys. 7 (1990) 119. Zbl0721.58056
  2. [2] W. A. Bardeen, I. Bars, A. J. Hanson and R. D. Peccei, Study of the longitudinal kink modes of the string, Phys. Rev. D 13 (1976), 2364. 
  3. [3] I. Bars, A quantum string theory of hadrons and its relation to quantum chromodynamics in two dimensions, Nuclear Phys. B 111 (1976), 1744. 
  4. [4] S. J. Blank and C. Curley, Desingularizing maps of corank one, Proc. Amer. Math. Soc. 80 (1980), 483. Zbl0453.58012
  5. [5] S. Corder, G. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Yale preprint YCTP-P23-93; hep-th/9402107. 
  6. [6] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542. Zbl0194.21901
  7. [7] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer, New York - Heidelberg, 1973. Zbl0294.58004
  8. [8] D. J. Gross, Two-dimensional QCD as a string theory, 400 (1993), 161; hep-th/9212149. Zbl0941.81580
  9. [9] D. J. Gross and W. Taylor, IV, Twists and loops in the string theory of two-dimensional QCD, 403 (1993), 395; hep-th/9303076. Zbl1030.81518
  10. [10] D. J. Gross and W. Taylor, IV, Two-dimensional QCD is a string theory, 400 (1993), 181; hep-th/9301068. 
  11. [11] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23. Zbl0506.14016
  12. [12] W. Hirsch, Immersions of Manifolds, Trans. Amer. Math. Soc. 93 (1959), 242. Zbl0113.17202
  13. [13] G. 't Hooft, A planar diagram theory for strong interactions, 72 (1974), 461. 
  14. [14] G. 't Hooft, A two-dimensional model for mesons, 75 (1974), 461. 
  15. [15] P. Horava, Topological Rigid String Theory and Two Dimensional QCD, PUPT-1547, June 1995; hep-th/9507060. 
  16. [16] P. Horava, Topological Strings and QCD in Two Dimensions, to appear in: Proc. of The Cargese Workshop, 1993; hep-th/9311156. 
  17. [17] R. Lashof and S. Smale, On immersions of manifolds in Euclidean space, 68 (1958), 562. Zbl0097.38805
  18. [18] V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85. Zbl0592.55015
  19. [19] A. Migdal, Recursion equations in gauge field theories, Zh. Èksp. Teoret. Fiz. 69 (1975), 810; translated in Sov. Phys. JETP 42 (1975), 413. 
  20. [20] J. Pawełczyk, Immersions and folds in string theories of gauge fields, Internat. J. Modern Phys. A 11 (1996), 2661; hep-th/9604053. Zbl1044.81700
  21. [21] J. Pawełczyk, Two-dimensional string-theory model with no folds, 74 (1995), 3924; hep-th/9403175. 
  22. [22] B. Rusakov, Loop averages and partition function in U(N) gauge theory on two-dimensional manifolds, 5 (1990), 693. 
  23. [23] S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492. Zbl0081.38103
  24. [24] S. Smale, The classification of immersions of spheres in Euclidean spaces, 69 (1959), 327. Zbl0089.18201
  25. [25] W. Thurston, The Geometry and Topology of Three-manifolds, Ch. 13, Princeton notes, 1977 (unpublished). 
  26. [26] H. Whitney, On singularities of maps of Euclidean spaces: R 2 R 2 case, Ann. of Math. (2) 62 (1955), 374. 
  27. [27] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, 45 (1944), 220. Zbl0063.08237
  28. [28] E. Witten, Topological quantum field theory, 117 (1988), 353. Zbl0656.53078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.