On a theorem of Chekanov

Emmanuel Ferrand

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 39-48
  • ISSN: 0137-6934

Abstract

top
A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.

How to cite

top

Ferrand, Emmanuel. "On a theorem of Chekanov." Banach Center Publications 39.1 (1997): 39-48. <http://eudml.org/doc/208677>.

@article{Ferrand1997,
abstract = {A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.},
author = {Ferrand, Emmanuel},
journal = {Banach Center Publications},
keywords = {contact structures; Legendrian isotopy; generating family quadratic at infinity; wave front},
language = {eng},
number = {1},
pages = {39-48},
title = {On a theorem of Chekanov},
url = {http://eudml.org/doc/208677},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Ferrand, Emmanuel
TI - On a theorem of Chekanov
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 39
EP - 48
AB - A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.
LA - eng
KW - contact structures; Legendrian isotopy; generating family quadratic at infinity; wave front
UR - http://eudml.org/doc/208677
ER -

References

top
  1. [A] V. Arnold, Topological invariants of plane curves and caustics, Univ. Lecture Ser. 5, Amer. Math. Soc., 1994. 
  2. [A-V-G] V. Arnold, A. Varchenko, S. Goussein-Zadé, Singularités des applications différentiables, I. Classification des points critiques, des caustiques et des fronts d'ondes, Mir, Moscou, 1986. 
  3. [B] M. Brunella, On a theorem of Sikorav, Enseign. Math. 37 (1991), 83-87. Zbl0739.58015
  4. [C] Y. Chekanov, Critical points of quasi-functions and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen. 30 (1996). 
  5. [Ch] M. Chaperon, On generating families, in: The Floer Memorial Volume, Helmut Hofer ed., Progr. Math. 133, Birkhäuser, 1995. 
  6. [Ch-Z] M. Chaperon, E. Zehnder, Quelques résultats globaux en géométrie symplectique, in Géométrie symplectique et de contact: autour du théorème de Poincaré-Birkhoff, P. Dazord, N. Desolneux-Moulis (eds.), Travaux en Cours, Hermann, Paris, 1984, 51-121. 
  7. [L-S] F. Lalonde, J. C. Sikorav, Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents, Comment. Math. Helv. 66 (1991), 18-33. 
  8. [Si] J. C. Sikorav, Problèmes d'intersections et de points fixes en géométrie Hamiltonienne, Comment. Math. Helv. 62 (1987), 62-73. Zbl0684.58015
  9. [T-W] F. Takens, J. White, Morse theory of double normals of immersions, Indiana Univ. Math. J. 21 (1971), 11-17. Zbl0228.58007
  10. [Th] D. Théret, Ph. D. Thesis, Université Paris VII, to appear. 
  11. [V] C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685-710. Zbl0735.58019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.