Canonical functions of asymptotic diffraction theory associated with symplectic singularities

Andrzej Hanyga

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 57-71
  • ISSN: 0137-6934

Abstract

top
A general method of deriving canonical functions for ray field singularities involving caustics, shadow boundaries and their intersections is presented. It is shown that many time-domain canonical functions can be expressed in terms of elementary functions and elliptic integrals.

How to cite

top

Hanyga, Andrzej. "Canonical functions of asymptotic diffraction theory associated with symplectic singularities." Banach Center Publications 39.1 (1997): 57-71. <http://eudml.org/doc/208679>.

@article{Hanyga1997,
abstract = {A general method of deriving canonical functions for ray field singularities involving caustics, shadow boundaries and their intersections is presented. It is shown that many time-domain canonical functions can be expressed in terms of elementary functions and elliptic integrals.},
author = {Hanyga, Andrzej},
journal = {Banach Center Publications},
keywords = {asymptotic diffraction theory; Maslov theory; eikonal function; uniform asymptotic expansion; symplectic singularities; Lagrangian immersion; pseudodifferential operators},
language = {eng},
number = {1},
pages = {57-71},
title = {Canonical functions of asymptotic diffraction theory associated with symplectic singularities},
url = {http://eudml.org/doc/208679},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Hanyga, Andrzej
TI - Canonical functions of asymptotic diffraction theory associated with symplectic singularities
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 57
EP - 71
AB - A general method of deriving canonical functions for ray field singularities involving caustics, shadow boundaries and their intersections is presented. It is shown that many time-domain canonical functions can be expressed in terms of elementary functions and elliptic integrals.
LA - eng
KW - asymptotic diffraction theory; Maslov theory; eikonal function; uniform asymptotic expansion; symplectic singularities; Lagrangian immersion; pseudodifferential operators
UR - http://eudml.org/doc/208679
ER -

References

top
  1. [1] V. I. Arnol'd, A. N. Varchenko and S. M. Husein-Zade, Singularities of Differentiable Maps, Vol. I, Birkhäuser Verlag, Basel, 1985. 
  2. [2] S. Benenti and W. M. Tulczyjew, The Geometrical Meaning and Globalization of the Hamilton-Jacobi Method, in: Differential geometrical methods in mathematical physics, Proc. Conf. Aix-en-Provence/Salamanca 1979, Lecture Notes in Math. 836, Springer, Berlin, 1980, 9-21. 
  3. [3] M. G. Brown and F. D. Tappert, Causality, caustics and the structure of transient wavefields, J. Acoust. Soc. Amer. 85 (1986), 251-255. 
  4. [4] R. Burridge, The reflection of a pulse in a solid sphere, Proc. Roy. Soc. London A276 (1962), 367-400. Zbl0114.17603
  5. [5] J. N. L. Connor, A method for the numerical evaluation of the oscillatory integrals associated with cuspoid catastrophes: applications to Pearcey's integral and its derivatives, J. Phys. A 15 (1982), 1179-1190. Zbl0485.65019
  6. [6] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207-281. Zbl0285.35010
  7. [7] M. V. Fedoryuk, Saddle Point Method, Nauka, Moscow, 1977 (in Russian). 
  8. [8] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer-Verlag, New York, 1973. Zbl0294.58004
  9. [9] V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence, RI, 1977. 
  10. [10] A. Hanyga, Boundary effects in Asymptotic Diffraction Theory, Part I-III, Seismo-series (int. reports ISEP Univ. of Bergen), Vol. 35-37, Bergen, 1989. 
  11. [11] A. Hanyga, Local behaviour of wavefields at simple caustics, Seismo-series (int. reports ISEP Univ. of Bergen), Vol. 38, 1989. 
  12. [12] A. Hanyga, Numerical applications of Asymptotic Diffraction Theory, in: Mathematical and Numerical Aspects of Wave Propagation, Univ. of Delaware, June 1993, R. Kleinman et al. (eds.), SIAM, Philadelphia, 1993. Zbl0815.35112
  13. [13] A. Hanyga, Asymptotic Diffraction Theory applied to edge-vertex diffraction, in: Proc. 7th Conference on Waves and Stability in Continuous Media, Bologna, Nov. 1993, S. Rionero & T. Ruggeri (eds.), World Scientific Publishing, Singapore, 1994. Zbl0815.35112
  14. [14] A. Hanyga, Asymptotic vertex and edge diffraction, Geophys. J. Int. 122 (1995), 277-290. 
  15. [15] A. Hanyga and M. Seredyńska, Diffraction of pulses in the vicinity of simple caustics and caustic cusps, Wave Motion 14 (1991), 101-121. Zbl0751.35048
  16. [16]S. Janeczko, On isotropic submanifolds and evolution of quasi-caustics, Pacific J. Math. 158 (1993), 317-334. Zbl0806.58023
  17. [17] S. Janeczko and G. Plotnikova, Sur la structure de quasi-caustiques en diffraction géometrique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 543-546. Zbl0714.58019
  18. [18] J. B. Keller, Geometrical Theory of Diffraction, J. Opt. Soc. Amer. 52 (1966), 116-130. 
  19. [19] Yu. A. Kravtsov and Yu. I. Orlov, Caustics, Catastrophes and Wave Fields, Springer-Verlag, Berlin, 1993. 
  20. [20] V. P. Maslov and V. M. Fedoryuk, Semi-classical approximation in quantum mechanics, D. Reidel, Doordrecht, 1981. Zbl0458.58001
  21. [21] F. Pham, Singularités des systèmes differentiels de Gauss-Manin, Progr. Math. 2, Birkhäuser, Basel, 1979. Zbl0524.32015
  22. [22] T. Poston and I. Stewart, Catastrophe Theory and Its Applications, Pitman, London, 1978. Zbl0382.58006
  23. [23] D. Siersma, Singularities of functions on boundaries, corners etc., Quart. J. Math. Oxford (2) 32 (1981), 119-127. Zbl0417.58002
  24. [24] D. Stickler, D. S. Ahluwalia and L. Ting, Application of Ludwig's uniform progressing wave ansatz to a smooth caustic, J. Acoust. Soc. Amer. 69 (1981), 1673-1681. Zbl0533.73036
  25. [25] A. Weinstein, Lectures on Symplectic Manifolds, in: CBMS Conference Series, American Mathematical Society, Vol. 29, Providence, RI, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.