# Symplectic Capacities in Manifolds

Banach Center Publications (1997)

- Volume: 39, Issue: 1, page 77-87
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topKünzle, Alfred. "Symplectic Capacities in Manifolds." Banach Center Publications 39.1 (1997): 77-87. <http://eudml.org/doc/208681>.

@article{Künzle1997,

abstract = {Symplectic capacities coinciding on convex sets in the standard symplectic vector space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings of non-smooth convex sets and a product formula, calculations of some capacities become very simple. Moreover, it is proved that there exist such capacities which are distinct and that there are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.},

author = {Künzle, Alfred},

journal = {Banach Center Publications},

language = {eng},

number = {1},

pages = {77-87},

title = {Symplectic Capacities in Manifolds},

url = {http://eudml.org/doc/208681},

volume = {39},

year = {1997},

}

TY - JOUR

AU - Künzle, Alfred

TI - Symplectic Capacities in Manifolds

JO - Banach Center Publications

PY - 1997

VL - 39

IS - 1

SP - 77

EP - 87

AB - Symplectic capacities coinciding on convex sets in the standard symplectic vector space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings of non-smooth convex sets and a product formula, calculations of some capacities become very simple. Moreover, it is proved that there exist such capacities which are distinct and that there are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.

LA - eng

UR - http://eudml.org/doc/208681

ER -

## References

top- [A84] J. P. Aubin, L'analyse non linéaire et ses motivations économiques, Masson, Paris, 1984. Zbl0551.90001
- [CE80] F. H. Clarke, I. Ekeland, Hamiltonian trajectories with prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116. Zbl0403.70016
- [E90] I. Ekeland, Convexity methods in Hamiltonian mechanics, Springer, Berlin-Heidelberg, 1990.
- [EH89] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics I, Math. Z. 200 (1989), 355-378. See also C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 37-40. Zbl0641.53035
- [EH90] I. Ekeland, H. Hofer, Symplectic Topology and Hamiltonian Dynamics II, Math. Z. 203 (1990), 553-567. Zbl0729.53039
- [G85] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347. Zbl0592.53025
- [H91] M. Herman, Exemples de flots Hamiltoniens dont aucune perturbation en topologie ${C}^{\infty}$ n’a d’orbites périodiques sur un ouvert de surfaces d’énergies, C. R. Acad. Sci. Sér. I Math. 312 (1991), 989-994. Zbl0759.58016
- [HZ87] H. W. Hofer, E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math. 90 (1987), 1-9. Zbl0631.58022
- [HZ90] H. W. Hofer, E. Zehnder, A new capacity for symplectic manifolds, in: Analysis et cetera, Academic Press, 1990, 405-429.
- [HZ94] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel-Boston-Berlin, 1994. Zbl0805.58003
- [K90] A. F. Künzle, Une capacité symplectique pour les ensembles convexes et quelques applications, Ph.D. thesis, Université Paris IX Dauphine, June 1990.
- [K91] A. F. Künzle, The least characteristic action as symplectic capacity, preprint, Forschungsinstitut für Mathematik, ETH Zürich, May 1991.
- [K93] A. F. Künzle, Singular Hamiltonian systems and Symplectic Capacities, in: Singularities and Differential Equations, Banach Center Publ. 33 (1996), 171-187. Zbl0855.58027
- [R70] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton N.J., 1970.
- [Si93] K. F. Siburg, Symplectic capacities in two dimensions, Manuscripta Math. 78 (1993), 149-163. Zbl0791.58043
- [Si90] J. C. Sikorav, Systèmes Hamiltoniens et topologie symplectique, Lecture Notes, Dipartimento di Matematica dell'Università di Pisa, August 1990.
- [V87] C. Viterbo, A proof of the Weinstein conjecture in ${\mathbb{R}}^{2n}$, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 337-357.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.