Homology of braid groups and their generalizations

Vladimir Vershinin

Banach Center Publications (1998)

  • Volume: 42, Issue: 1, page 421-446
  • ISSN: 0137-6934

Abstract

top
In the paper we give a survey of (co)homologies of braid groups and groups connected with them. Among these groups are pure braid groups and generalized braid groups. We present explicit formulations of some theorems of V. I. Arnold, E. Brieskorn, D. B. Fuks, F. Cohen, V. V. Goryunov and others. The ideas of some proofs are outlined. As an application of (co)homologies of braid groups we study the Thom spectra of these groups.

How to cite

top

Vershinin, Vladimir. "Homology of braid groups and their generalizations." Banach Center Publications 42.1 (1998): 421-446. <http://eudml.org/doc/208821>.

@article{Vershinin1998,
abstract = {In the paper we give a survey of (co)homologies of braid groups and groups connected with them. Among these groups are pure braid groups and generalized braid groups. We present explicit formulations of some theorems of V. I. Arnold, E. Brieskorn, D. B. Fuks, F. Cohen, V. V. Goryunov and others. The ideas of some proofs are outlined. As an application of (co)homologies of braid groups we study the Thom spectra of these groups.},
author = {Vershinin, Vladimir},
journal = {Banach Center Publications},
keywords = {generalized braid group; configuration space; homology; Eilenberg-MacLane spectrum; Braid group; Coxeter group; Thom spectrum; homologies of braid groups; pure braid groups; generalized braid groups; Thom spectra},
language = {eng},
number = {1},
pages = {421-446},
title = {Homology of braid groups and their generalizations},
url = {http://eudml.org/doc/208821},
volume = {42},
year = {1998},
}

TY - JOUR
AU - Vershinin, Vladimir
TI - Homology of braid groups and their generalizations
JO - Banach Center Publications
PY - 1998
VL - 42
IS - 1
SP - 421
EP - 446
AB - In the paper we give a survey of (co)homologies of braid groups and groups connected with them. Among these groups are pure braid groups and generalized braid groups. We present explicit formulations of some theorems of V. I. Arnold, E. Brieskorn, D. B. Fuks, F. Cohen, V. V. Goryunov and others. The ideas of some proofs are outlined. As an application of (co)homologies of braid groups we study the Thom spectra of these groups.
LA - eng
KW - generalized braid group; configuration space; homology; Eilenberg-MacLane spectrum; Braid group; Coxeter group; Thom spectrum; homologies of braid groups; pure braid groups; generalized braid groups; Thom spectra
UR - http://eudml.org/doc/208821
ER -

References

top
  1. [Ad] J. F. Adams, Stable homotopy and generalised homology, The University of Chicago Press, Chicago and London, 1974. Zbl0309.55016
  2. [Arn1] V. I. Arnold, The cohomology ring of colored braids, Mat. Zametki 5 No 2 (1969), 227-231 (Russian), English transl. in Trans. Moscow Math. Soc. 21 (1970), 30-52. 
  3. [Arn2] V. I. Arnold, On some topological invariants of algebraic functions, Trudy Moskov. Mat. Obshch. 21 (1970), 27-46 (in Russian), English transl. in Trans. Moscow Math. Soc. 21 (1970), 30-52. 
  4. [Art1] E. Artin, Theorie der Zopfe, Abh. math. semin. Univ. Hamburg 4 (1925), 47-72. Zbl51.0450.01
  5. [Art2] E. Artin, Theory of braids, Ann. of Math. 48, No 1 (1947) 101-126. Zbl0030.17703
  6. [Bi] J. Birman, Braids, links, and mapping class groups, Ann. Math. Stud., No 82, 1974. 
  7. [Bo] N. Bourbaki, Groupes et algèbres de Lie. Chap. 4, 5, 6., Hermann, Paris, 1968. 
  8. [BCKQRS] A. Bousfield, E. Curtis, D. Kan, D. Quillen, D. Rector, J. Schlesinger, The mod p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. Zbl0158.20502
  9. [Bri] E. Brieskorn, Sur les groupes de tresses, Sém. Bourbaki, n°401, novembre 1971 (Lecture Notes in Math., No 317, 1973, 21-44). 
  10. [BG] E. Brown, S. Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283-295. Zbl0266.55012
  11. [BP] E. Brown, F. Peterson, The stable decomposition of Ω 2 S r + 2 , Trans. Amer. Math. Soc. 243 (1978), 287-298. Zbl0404.55003
  12. [Bro] K. S. Brown, Cohomology of groups, Springer, N. Y. a. o., 1982. 
  13. [Bu] S. Bullett, Permutations and braids in cobordism theory, Proc. London Math. Soc. 38, Part 3 (1979) 517-531. Zbl0405.55002
  14. [Ch] W.-L. Chow, On the algebraical braid group, Ann. of Math. 49, No 3 (1948), 654-658. Zbl0033.01002
  15. [CF1] F. Cohen, Cohomology of braid spaces, Bull. Amer. Math. Soc. 79 No 4 (1973), 763-766. Zbl0272.55012
  16. [CF2] F. Cohen, Homology of Ω n + 1 Σ n + 1 X and C n + 1 X , n > 0 , Bull. Amer. Math. Soc. 79 No 6 (1973), 1236-1241. 
  17. [CF3] F. Cohen, Braid orientations and bundles with flat connections, Invent. Math. 46 (1978), 99-110. Zbl0377.55008
  18. [CF4] F. Cohen, Artin's braid groups, classical homotopy theory, and other curiosities, Braids (Contemp. Math. 78, 1988), 167-206. 
  19. [CLM] F. Cohen, T. Lada, J. P. May, The homology of iterated loop spaces, (Lecture Notes in Math.; No 533), Springer-Verlag, Berlin a. o., 1976. Zbl0334.55009
  20. [CT] F. Cohen and L. Taylor, On the representation theory associated to the cohomology of configuration spaces, Algebraic Topology. Oaxtepec 1991, Contemp. Math. 146 (1993), 91-109. 
  21. [CR] R. Cohen, The geometry of Ω 2 S 3 and braid orientations, Invent. Math. 54 (1979), 53-67. 
  22. [D] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. Zbl0238.20034
  23. [DL] E. Dyer and R. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 No 1 (1962), 35-88. Zbl0119.18206
  24. [FaN] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 Fasc. I (1962), 111-118. Zbl0136.44104
  25. [FoN] R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 Fasc. I (1962), 119-126. Zbl0117.41101
  26. [FK] R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Functionen. Bd. I. Gruppentheoretischen Grundlagen, Teubner, Leipzig, 1897 (Johnson Repr. Corp., N. Y., 1965, 634 p.). 
  27. [F1] D. B. Fuks, Cohomology of the braid group mod 2, Funktsional. Anal. i Prilozh. 4, No 2 (1970), 62-75 (in Russian), English transl. in Functional Anal. Appl. 4 (1970), 143-151. 
  28. [F2] D. B. Fuks, Quillenization and bordisms, Funktsional. Anal. i Prilozh. 8, No 1 (1974), 36-42 (in Russian), English transl. in Functional Anal. Appl. 8 (1974), 31-36. 
  29. [G1] V. V. Goryunov, Cohomology of the braid groups of the series C and D and some stratifications, Funktsional Anal. i Prilozh. 12, No 2 (1978), 76-77 (in Russian), English transl. in Functional Anal. Appl. 12 (1978), 139-140. 
  30. [G2] V. V. Goryunov, Cohomology of the braid groups of the series C and D, Trudy Moskov. Mat. Obshch. 42 (1981), 234-242 (in Russian), English transl. in Trans. Moscow Math. Soc. 1982, no 2. 
  31. [H] A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-61. 
  32. [La] S. Lambropoulou, Solid torus links and Hecke algebras of type B, in the Proceedings of the Conference on Quantum Topology, ed. D. N. Yetter, World Scientific Press, 1993, 225-245. Zbl0884.57004
  33. [Li] V. Ya. Lin, Artinian braids and groups and spaces connected with them, Itogi Nauki i Tekhniki (Algebra, Topologiya, Geometriya) 17 (1979), 159-227 (in Russian). English transl. in J. Soviet Math. 18 (1982) 736-788. 
  34. [Mah1] M. Mahowald, A new family in π * s , Topology 16 (1977), 249-254. 
  35. [Mah2] M. Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46, No 3 (1977), 249-259. 
  36. [May] J. P. May, The Geometry of iterated loop spaces, (Lecture Notes in Math.; No 271) Springer-Verlag, Berlin a. o., 1972. Zbl0244.55009
  37. [O] E. Ossa, On the cohomology of configuration spaces, Algebraic Topology: New Trends in Localization and Periodicity (Barcelona Conference on Algebraic Topology, 1994) Birkhäuser Verlag, Basel a. o., 1996, 353-361. 
  38. [Sa] B. Sanderson, The Geometry of Mahowald Orientations, in: Algebraic Topology. Aarhus, 1978 (Lecture Notes in Math., No 533) Springer-Verlag, Berlin a. o. (1979), 152-174. 
  39. [Se] G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221. Zbl0267.55020
  40. [St] R. E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, 1968. 
  41. [Sw] R. M. Switzer, Algebraic Topology - Homotopy and Homology, Springer-Verlag Berlin a. o., 1975. Zbl0305.55001
  42. [Vai] F. V. Vainshtein, Cohomology of the braid groups, Funktsional. Anal. i Prilozh. 12, No 2 (1978), 72-73 (in Russian), English transl. in Functional Anal. Appl. 4 (1970), 143-151. 
  43. [Vas] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, (Translations of mathematical monographs; v. 98), AMS, Providence, 1992. 
  44. [Ve] V. V. Vershinin, Thom spectra of generalized braid groups, Preprint No 95/02-2, Université de Nantes, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.