The variational approach to the Dirichlet problem in C*-algebras

Fabio Cipriani

Banach Center Publications (1998)

  • Volume: 43, Issue: 1, page 135-146
  • ISSN: 0137-6934

Abstract

top
The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.

How to cite

top

Cipriani, Fabio. "The variational approach to the Dirichlet problem in C*-algebras." Banach Center Publications 43.1 (1998): 135-146. <http://eudml.org/doc/208832>.

@article{Cipriani1998,
abstract = {The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.},
author = {Cipriani, Fabio},
journal = {Banach Center Publications},
keywords = {maximum principle; weak solution; noncommutative Dirichlet problem; sub-Markovian semigroup; KMS condition; Dirichlet forms on standard von Neumann algebras},
language = {eng},
number = {1},
pages = {135-146},
title = {The variational approach to the Dirichlet problem in C*-algebras},
url = {http://eudml.org/doc/208832},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Cipriani, Fabio
TI - The variational approach to the Dirichlet problem in C*-algebras
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 135
EP - 146
AB - The aim of this work is to develop the variational approach to the Dirichlet problem for generators of sub-Markovian semigroups on C*-algebras. KMS symmetry and the KMS condition allow the introduction of the notion of weak solution of the Dirichlet problem. We will then show that a unique weak solution always exists and that a generalized maximum principle holds true.
LA - eng
KW - maximum principle; weak solution; noncommutative Dirichlet problem; sub-Markovian semigroup; KMS condition; Dirichlet forms on standard von Neumann algebras
UR - http://eudml.org/doc/208832
ER -

References

top
  1. [Ara] H. Araki, Some properties of the modular conjugation operator of von Neumann algebras and noncommutative Radon-Nikodym theorem with chain rule, Pacific J. Math. 50 (1974), 309-354. Zbl0287.46074
  2. [Bre] H. Brezis, Analyse Fonctionnelle, Masson S.A., Paris, Milan, Barcelone 1993. 
  3. [Cip] F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259-300. Zbl0883.47031
  4. [Con1] A. Connes, Caractérisation des espaces vectoriels ordonnés sous jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 No. 4 (1974), 121-155. Zbl0287.46078
  5. [Con2] A. Connes, Noncommutative Geometry, Academic Press, London New York San Francisco, 1994. 
  6. [GL] S. Goldstein and J. M. Lindsay, Beurling-Deny conditions for KMS-symmetric dynamical semigroups, C. R. Acad. Sci. Paris, Ser. I 317 (1993), 1053-1057. Zbl0795.46047
  7. [Haa] U. Haagerup, The standard form of a von Neumann algebra, Math. Scand. 37 (1975), 271-283. 
  8. [Ioc] B. Iochum, Cones autopolaires et algèbres de Jordan, Lecture Notes in Mathematics 1049, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl0556.46040
  9. [Ped] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London New York San Francisco, 1979. 
  10. [Ric] C. E. Rickart, General Theory of Banach Algebras, D. Van Nostrand Company, Inc., Princeton, New Jersey, Toronto New York London, 1960. 
  11. [Sau1] J.-L. Sauvageot, Le problème de Dirichlet dans les C*-algèbres, J. Funct. Anal. 101 (1991), 50-73. 
  12. [Sau2] J.-L. Sauvageot, Markov quantum semigroups admits covariant Markov C*-dilations, Comm. Math. Phys. 106 (1986), 91-103. Zbl0606.60079
  13. [Sau3] J.-L. Sauvageot, First exit time: A theory of stopping times in quantum processes, in: Quantum Probability and Applications III, Lect. Notes in Math. 1303, Springer-Verlag, New York, 1988. 
  14. [Sau4] J.-L. Sauvageot, Semi-groupe de la chaleur transverse sur la C*-algèbre d'un feuilletage riemannien, J. Funct. Anal. 142 (1996), 511-538. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.