Probability and quanta: why back to Nelson?

Piotr Garbaczewski

Banach Center Publications (1998)

  • Volume: 43, Issue: 1, page 191-199
  • ISSN: 0137-6934

Abstract

top
We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.

How to cite

top

Garbaczewski, Piotr. "Probability and quanta: why back to Nelson?." Banach Center Publications 43.1 (1998): 191-199. <http://eudml.org/doc/208838>.

@article{Garbaczewski1998,
abstract = {We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.},
author = {Garbaczewski, Piotr},
journal = {Banach Center Publications},
keywords = {diffusion processes; partial differential equations; stochastic mechanics},
language = {eng},
number = {1},
pages = {191-199},
title = {Probability and quanta: why back to Nelson?},
url = {http://eudml.org/doc/208838},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Garbaczewski, Piotr
TI - Probability and quanta: why back to Nelson?
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 191
EP - 199
AB - We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.
LA - eng
KW - diffusion processes; partial differential equations; stochastic mechanics
UR - http://eudml.org/doc/208838
ER -

References

top
  1. [1] Ph. Blanchard and P. Garbaczewski, Natural boundaries for the Smoluchowski equation and affiliated diffusion processes, Phys. Rev. E 49, (1994), 3815. 
  2. [2] K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger Equation, Springer-Verlag, Berlin, 1995. Zbl0819.60068
  3. [3] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985. 
  4. [4] P. Garbaczewski, J. R. Klauder and R. Olkiewicz, Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics, Phys. Rev. E 51, (1995), 4114. 
  5. [5] P. Garbaczewski and R. Olkiewicz, Feynman-Kac kernels in Markovian representations of the Schrödinger interpolating dynamics, J. Math. Phys. 37, (1996), 730. Zbl0869.60101
  6. [6] P. Garbaczewski, Schrödinger's interpolation problem through Feynman-Kac kernels, Acta Phys. Polon. B 27, (1996), 617. Zbl0966.82512
  7. [7] P.Garbaczewski and G. Kondrat, Burgers velocity fields and dynamical transport processes, Phys. Rev. Lett. 77, (1996), 2608. 
  8. [8] P. Garbaczewski, G. Kondrat and R. Olkiewicz, Burgers flows as Markovian diffusion processes, Phys. Rev. E 55, (1997), 1401. Zbl0939.35201
  9. [9] W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin, 1984. Zbl0529.60085
  10. [10] C. Marchioro and M. Pulvirenti, Vortex methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics 203, Springer-Verlag, Berlin, 1984. Zbl0545.76027
  11. [11] E. Nelson, Dynamical Theories of the Brownian Motion, Princeton University Press, Princeton, 1967. Zbl0165.58502
  12. [12] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1992. Zbl0742.76002
  13. [13] H. Risken, The Fokker-Planck Equation, Springer-Verlag, Berlin, 1989. Zbl0665.60084
  14. [14] E. Schrödinger, Relativistic electron, Ann. Inst. Henri Poincaré, 2, (1932), 269. 
  15. [15] J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys. 27, (1986), 3207. Zbl0623.60102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.