Quantum geometry of noncommutative Bernoulli shifts
Banach Center Publications (1998)
- Volume: 43, Issue: 1, page 25-29
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topAlicki, Robert. "Quantum geometry of noncommutative Bernoulli shifts." Banach Center Publications 43.1 (1998): 25-29. <http://eudml.org/doc/208847>.
@article{Alicki1998,
abstract = {We construct an example of a noncommutative dynamical system defined over a two dimensional noncommutative differential manifold with two positive Lyapunov exponents equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift and the expanding map of the circle and moreover as an example of the noncommutative Pesin theorem.},
author = {Alicki, Robert},
journal = {Banach Center Publications},
keywords = {noncommutative dynamical system; two-dimensional noncommutative differential manifold; positive Lyapunov exponents; quantum Bernoulli shift; noncommutative Pesin theorem},
language = {eng},
number = {1},
pages = {25-29},
title = {Quantum geometry of noncommutative Bernoulli shifts},
url = {http://eudml.org/doc/208847},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Alicki, Robert
TI - Quantum geometry of noncommutative Bernoulli shifts
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 25
EP - 29
AB - We construct an example of a noncommutative dynamical system defined over a two dimensional noncommutative differential manifold with two positive Lyapunov exponents equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift and the expanding map of the circle and moreover as an example of the noncommutative Pesin theorem.
LA - eng
KW - noncommutative dynamical system; two-dimensional noncommutative differential manifold; positive Lyapunov exponents; quantum Bernoulli shift; noncommutative Pesin theorem
UR - http://eudml.org/doc/208847
ER -
References
top- [1]] J. Andries and M. De Cock, Dynamical entropy of a non-commutative version of the phase doubling, this volume.
- [2] J. Andries, M. Fannes, P. Tuyls, and R. Alicki, The dynamical entropy of the quantum Arnold cat map, Lett. Math. Phys. 35 (1995), 375-383. Zbl0842.58054
- [3] R. Alicki and M. Fannes, Defining quantum dynamical entropy, Lett. Math. Phys. 32 (1994), 75-82. Zbl0814.46055
- [4] R. Alicki, J. Andries, M. Fannes and P. Tuyls, An algebraic approach to the Kolmogorov-Sinai entropy, Rev. Math. Phys. 8 (1996), 167-184. Zbl0884.46039
- [5] A. Connes, Non-commutative Geometry, Academic Press, New York, 1994.
- [6] A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987) 691-719. Zbl0637.46073
- [7] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer, Berlin, 1982. Zbl0493.28007
- [8] G. Emch, H. Narnhofer, W. Thirring, and G.L. Sewell, Anosov actions on non-commutative algebras, J. Math. Phys. 35, (1994) 5582-5599. Zbl0817.58028
- [9] T. Hudetz, Quantum dynamical entropy revised, this volume.
- [10] G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications, Vol.III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, 183-191.
- [11] W. A. Majewski and M. Kuna, On quantum characteristic exponents, J. Math. Phys. 34, (1993) 5007-5015. Zbl0783.58031
- [12] P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Leuven, 1997.
- [13] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys. 144, (1992) 443-490.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.