Splitting the conservation process into creation and annihilation parts
Banach Center Publications (1998)
- Volume: 43, Issue: 1, page 341-348
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Biane, Calcul stochastique non-commutatif, in: Ecole d'été de Probabilités de Saint-Flour, volume 1608 of Lecture Notes in Mathematics, Saint-Flour, 1993. Springer-Verlag.
- [2] J. M. C. Clark, The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Stat. 41 (1970), 1281-1295.
- [3] R. L. Hudson and K. R. Parthasarathy, Quantum Itô's formula and stochastic evolutions, Commun. Math. Phys. 93 (1984), 301-323. Zbl0546.60058
- [4] J. M. Lindsay, Quantum and non-causal stochastic calculus, Probab. Theory Related Fields 97 (1993), 65-80. Zbl0794.60052
- [5] P. A. Meyer, Quantum Probability for Probabilists, volume 1538 of Lecture Notes in Mathematics, Springer-Verlag, Berlin/New York 1993. Zbl0773.60098
- [6] D. Nualart, The Malliavin Calculus and Related Topics, Probability and its Applications, Springer-Verlag, Berlin/New York 1995. Zbl0837.60050
- [7] D. Nualart and J. Vives, Anticipative calculus for the Poisson process based on the Fock space, in: J. Azéma, P.A. Meyer, and M. Yor (eds.), Séminaire de Probabilités XXIV, volume 1426 of Lecture Notes in Mathematics, pp. 154-165. Springer-Verlag, Berlin/New York 1990. Zbl0701.60048
- [8] D. Ocone, A guide to the stochastic calculus of variations, in: H. Körezlioǧlu and A.S. Üstünel (eds.), Stochastic Analysis and Related Topics, Silivri, 1988; volume 1316 of Lecture Notes in Mathematics, Springer-Verlag, Berlin/New York 1988.
- [9] N. Privault, A calculus on Fock space and its probabilistic interpretations, Bull. Sci. Math., to appear.
- [10] N. Privault, An extension of the quantum Itô table and its matrix representation, to appear in Quantum Probability Communications X, World Scientific, 1998.
- [11] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semi-groups, Probab. Math. Stat. 3 (1984), 217-239. Zbl0548.60058
- [12] A. S. Üstünel, Representation of the distributions on Wiener space and stochastic calculus of variations, J. Funct. Anal. 70 (1987), 126-129.