Gaussian random band matrices and operator-valued free probability theory

Dimitri Shlyakhtenko

Banach Center Publications (1998)

  • Volume: 43, Issue: 1, page 359-368
  • ISSN: 0137-6934

How to cite

top

Shlyakhtenko, Dimitri. "Gaussian random band matrices and operator-valued free probability theory." Banach Center Publications 43.1 (1998): 359-368. <http://eudml.org/doc/208857>.

@article{Shlyakhtenko1998,
author = {Shlyakhtenko, Dimitri},
journal = {Banach Center Publications},
keywords = {semicircular B-families; joint B-distribution; free with amalgamation over B; fundamental group of a factor; non-commutative probability space; -transform; free groups; Araki-Woods factors},
language = {eng},
number = {1},
pages = {359-368},
title = {Gaussian random band matrices and operator-valued free probability theory},
url = {http://eudml.org/doc/208857},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Shlyakhtenko, Dimitri
TI - Gaussian random band matrices and operator-valued free probability theory
JO - Banach Center Publications
PY - 1998
VL - 43
IS - 1
SP - 359
EP - 368
LA - eng
KW - semicircular B-families; joint B-distribution; free with amalgamation over B; fundamental group of a factor; non-commutative probability space; -transform; free groups; Araki-Woods factors
UR - http://eudml.org/doc/208857
ER -

References

top
  1. [1] S. R. Bahcall, Random matrix model for superconductors in a magnetic field, to appear in Phys. Rev. Letters. 
  2. [2] B. Blackadar, K-theory for operator algebras, Springer-Verlag, 1986. Zbl0597.46072
  3. [3] L. V. Bogachev, S. A. Molchanov and L. A. Pastur, On the density of states of random band matrices, Math. Notes 50 (1991), 1232-1242. Zbl0778.60008
  4. [4] G. Casati and V. Girko, Generalized Wigner law for band random matrices, Random Oper. and Stoch. Equ. 1 (1993), 279-286. Zbl0839.60035
  5. [5] G. Casati, V. Girko and L. Molinari, Equations for limit functions of band random matrices, Random Oper. and Stoch. Equ. 1 (1993), 91-94. Zbl0842.60032
  6. [6] K. Dykema, On certain free product factors via an extended matrix model, J. Funct. Anal. 112 (1993), 31-60. Zbl0768.46039
  7. [7] F. M. Goodman, R. de la Harpe and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, 1989. Zbl0698.46050
  8. [8] V. F. R. Jones, Index for subfactors, Invent. math. 72 (1983), 1-25. Zbl0508.46040
  9. [9] M. L. Mehta, Random matrices, Academic Press, 1991. 
  10. [10] L. Pastur, Eigenvalue distribution of random operators and matrices, Séminaire Bourbaki, vol. 1991/92, No. 206, Exp. No. 758, 5, Astérisque, 1993, pp. 445-461. Zbl0790.35081
  11. [11] M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by 𝒁, in: D.-V. Voiculescu (ed.), Free Probability, Fields Institute Communications, vol. 12, American Mathematical Society, 1997, pp. 189-212. Zbl0871.46028
  12. [12] S. Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. math. 111 (1993), 375-405. Zbl0787.46047
  13. [13] F. Rădulescu, A one parameter group of automorphisms of L ( F ) B ( ) scaling the trace, C. R. Acad. Sci. Paris 314 (1992), 1027-1032. Zbl0810.46073
  14. [14] F. Rădulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. math. 115 (1994), 347-389. Zbl0861.46038
  15. [15] F. Rădulescu, A type I I I λ factor with core isomorphic to the von Neumann algebra of a free group, tensor B(H), in: Recent advances in operator algebras (Orléans, 1992), no. 232, Astérisque, 1995, pp. 203-209. 
  16. [16] D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgamation, Internat. Math. Res. Notices 20 (1996), 1013-1026. Zbl0872.15018
  17. [17] D. Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191-212. Zbl0926.46046
  18. [18] D. Shlyakhtenko, A-valued semicircular systems, preprint, 1997. Zbl0951.46035
  19. [19] D. Shlyakhtenko, Free quasi-free states, Pacific J. Math. 177 (1997), 329-368. Zbl0882.46026
  20. [20] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998). Zbl0935.46056
  21. [21] D.-V. Voiculescu, Symmetries of some reduced free product C*-algebras, in: Operator Algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, vol. 1132, Springer Verlag, 1985, pp. 556-588. 
  22. [22] D.-V. Voiculescu, Addition of certain non-commuting random variables, J. Funct. Anal. 17 (1986), 323-345. Zbl0651.46063
  23. [23] D.-V. Voiculescu, Free noncommutative random variables, random matrices and the I I 1 factors of free groups, in: Quantum probability and related topics, QP-PQ, VI, World Sci. Publishing, River Edge, NJ, 1991, pp. 473-487. Zbl0928.46045
  24. [24] D.-V. Voiculescu, Limit laws for random matrices and free products, Invent. math. 104 (1991), 201-220. Zbl0736.60007
  25. [25] D.-V. Voiculescu, Operations on certain non-commutative operator-valued random variables, in: Recent advances in operator algebras (Orléans, 1992), no. 232, Astérisque, 1995, pp. 243-275. 
  26. [26] D.-V. Voiculescu, K. Dykema and A. Nica, Free random variables, CRM monograph series, vol. 1, American Mathematical Society, 1992. Zbl0795.46049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.