Examples of functions -extendable for each finite, but not -extendable

Wiesław Pawłucki

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 183-187
  • ISSN: 0137-6934

Abstract

top
In Example 1, we describe a subset X of the plane and a function on X which has a k -extension to the whole 2 for each finite, but has no -extension to 2 . In Example 2, we construct a similar example of a subanalytic subset of 5 ; much more sophisticated than the first one. The dimensions given here are smallest possible.

How to cite

top

Pawłucki, Wiesław. "Examples of functions $^$-extendable for each finite, but not $^∞$-extendable." Banach Center Publications 44.1 (1998): 183-187. <http://eudml.org/doc/208881>.

@article{Pawłucki1998,
abstract = {In Example 1, we describe a subset X of the plane and a function on X which has a $^k$-extension to the whole $ℝ^2$ for each finite, but has no $^∞$-extension to $ℝ^2$. In Example 2, we construct a similar example of a subanalytic subset of $ℝ^5$; much more sophisticated than the first one. The dimensions given here are smallest possible.},
author = {Pawłucki, Wiesław},
journal = {Banach Center Publications},
keywords = {extension of -functions; subanalytic sets; algebras of germs of analytic functions},
language = {eng},
number = {1},
pages = {183-187},
title = {Examples of functions $^$-extendable for each finite, but not $^∞$-extendable},
url = {http://eudml.org/doc/208881},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Pawłucki, Wiesław
TI - Examples of functions $^$-extendable for each finite, but not $^∞$-extendable
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 183
EP - 187
AB - In Example 1, we describe a subset X of the plane and a function on X which has a $^k$-extension to the whole $ℝ^2$ for each finite, but has no $^∞$-extension to $ℝ^2$. In Example 2, we construct a similar example of a subanalytic subset of $ℝ^5$; much more sophisticated than the first one. The dimensions given here are smallest possible.
LA - eng
KW - extension of -functions; subanalytic sets; algebras of germs of analytic functions
UR - http://eudml.org/doc/208881
ER -

References

top
  1. [1] E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, Bull. Amer. Math. Soc. 25 (1991), 385-383. Zbl0739.32010
  2. [2] E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, preprint. Zbl0912.32006
  3. [3] E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. Zbl0674.32002
  4. [4] E. Bierstone, P. D. Milman, W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620. Zbl0868.32011
  5. [5] Z. Denkowska, S. Łojasiewicz, J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Polish Acad. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
  6. [6] A. Gabrielov, Projections of semianalytic sets, Funkcional Anal. i Priložen. 2 no. 4 (1968), 18-30 (in Russian). English transl.: Functional Anal. Appl. 2 (1968), 282-291. 
  7. [7] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 453-493. 
  8. [8] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966. 
  9. [9] J. Merrien, Prolongateurs de fonctions différentiables d'une variable réelle, J. Math. Pures Appl. (9) 45 (1966), 291-309. Zbl0163.06602
  10. [10] W. Pawłucki, On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), 117-125. Zbl0769.32003
  11. [11] W. Pawłucki, On Gabrielov's regularity condition for analytic mappings, Duke Math. J. 65 (1992), 299-311. Zbl0773.32009

NotesEmbed ?

top

You must be logged in to post comments.