On symmetric semialgebraic sets and orbit spaces

Ludwig Bröcker

Banach Center Publications (1998)

  • Volume: 44, Issue: 1, page 37-50
  • ISSN: 0137-6934

Abstract

top
For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.

How to cite

top

Bröcker, Ludwig. "On symmetric semialgebraic sets and orbit spaces." Banach Center Publications 44.1 (1998): 37-50. <http://eudml.org/doc/208892>.

@article{Bröcker1998,
abstract = {For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.},
author = {Bröcker, Ludwig},
journal = {Banach Center Publications},
keywords = {symmetric semialgebraic sets; orbit spaces},
language = {eng},
number = {1},
pages = {37-50},
title = {On symmetric semialgebraic sets and orbit spaces},
url = {http://eudml.org/doc/208892},
volume = {44},
year = {1998},
}

TY - JOUR
AU - Bröcker, Ludwig
TI - On symmetric semialgebraic sets and orbit spaces
JO - Banach Center Publications
PY - 1998
VL - 44
IS - 1
SP - 37
EP - 50
AB - For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.
LA - eng
KW - symmetric semialgebraic sets; orbit spaces
UR - http://eudml.org/doc/208892
ER -

References

top
  1. [A-B-R] C. Andradas, L. Bröcker, J. Ruiz, Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb. (3) 33, Springer, Berlin, 1996. Zbl0873.14044
  2. [Be1] E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Monografias de Matemática 29, Instituto de Matématica Pura et Aplicada, Rio de Janeiro, 1978. 
  3. [Be2] E. Becker, On the real spectrum of a ring and its applications to semi-algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 19-60. 
  4. [B-C-R] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987. Zbl0633.14016
  5. [B] L. Bröcker, On basic semialgebraic sets, Exposition. Math. 9 (1991), 289-334. Zbl0783.14035
  6. [DM-I] F. De Meyer, E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer, Berlin, 1971. Zbl0215.36602
  7. [Di-Dr] J. Diller, A. Dress, Zur Galoistheorie pythagoreischer Körper, Arch. Math. (Basel) 16 (1965), 148-152. 
  8. [Kn-Schei] M. Knebusch, C. Scheiderer, Einführung in die reelle Algebra, Vieweg, Braunschweig, 1989. 
  9. [Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Math. D1, Vieweg, Braunschweig, 1985. 
  10. [Lu] D. Luna, Slices étales, in: Sur les groupes algébriques, Bull. Soc. Math. France, Mémoire 33, Paris, 1973, 81-105. Zbl0286.14014
  11. [Mar] M. Marshall, Minimal generation of basic sets in the real spectrum of a commutative ring, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemp. Math. 155, Amer. Math. Soc., Providence, 1994, 207-219. Zbl0811.14045
  12. [Pr] A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Math. 1093, Springer, Berlin, 1984. Zbl0548.12011
  13. [Pro-Schw] C. Procesi, G. Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), 539-554. Zbl0578.14010
  14. [Schei1] C. Scheiderer, Stability index of real varieties, Invent. Math. 97 (1989), 467-483. Zbl0715.14049
  15. [Schei2] C. Scheiderer, Spaces of orderings of fields under finite extensions, Manuscripta Math. 72 (1991), 27-47. Zbl0733.12003
  16. [Schw] G. Schwarz, The topology of algebraic quotients, in: Topological Methods in Algebraic Transformation Groups, Progr. Math. 80, Birkhäuser, Boston, 1989, 135-152. 
  17. [Slo-Kno] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, mit einem Anhang von F. Knop, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem. 13, Birkhäuser, Basel, 1989, 89-114. 
  18. [Weyl] H. Weyl, The Classical Groups, 2nd ed., Princeton University Press, 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.