The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category

J. Bryden; P. Zvengrowski

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 25-39
  • ISSN: 0137-6934

Abstract

top
This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.

How to cite

top

Bryden, J., and Zvengrowski, P.. "The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category." Banach Center Publications 45.1 (1998): 25-39. <http://eudml.org/doc/208907>.

@article{Bryden1998,
abstract = {This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.},
author = {Bryden, J., Zvengrowski, P.},
journal = {Banach Center Publications},
keywords = {cup products; cup product length; Lusternik-Schnirelmann category; degree one maps; diagonal map; Seifert manifolds; cohomology algebra; Seifert manifold; Lyusternik-Shnirel'man category},
language = {eng},
number = {1},
pages = {25-39},
title = {The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category},
url = {http://eudml.org/doc/208907},
volume = {45},
year = {1998},
}

TY - JOUR
AU - Bryden, J.
AU - Zvengrowski, P.
TI - The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 25
EP - 39
AB - This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.
LA - eng
KW - cup products; cup product length; Lusternik-Schnirelmann category; degree one maps; diagonal map; Seifert manifolds; cohomology algebra; Seifert manifold; Lyusternik-Shnirel'man category
UR - http://eudml.org/doc/208907
ER -

References

top
  1. [1] J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, L'anneau de cohomologie d'une variété de Seifert, C. R. Acad. Sci. Paris 324, Sér. I (1997), 323-326. 
  2. [2] J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, The cohomology ring of a class of Seifert manifolds, Top. and its Appl., to appear. Zbl0964.57019
  3. [3] J. Bryden and P. Zvengrowski, The cohomology ring of the orientable Seifert manifolds II, preprint. Zbl1025.57031
  4. [4] S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518. Zbl0079.25401
  5. [5] R. H. Fox, Free differential calculus. I. Derivations in the free group ring, Ann. of Math. 57 (1953), 547-560. Zbl0050.25602
  6. [6] R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370. Zbl67.0741.02
  7. [7] C. Hayat-Legrand, S. Wang and H. Zieschang, Degree-one maps onto lens spaces, Pac. J. Math. 176 (1996), 19-32. Zbl0877.57007
  8. [8] J. Hempel, 3-Manifolds, Annals of Math. Studies, vol. 86, Princeton University Press, Princeton, New Jersey 1976, 115-135. 
  9. [9] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, preprint. Zbl0947.55006
  10. [10] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348. Zbl0408.55008
  11. [11] S. MacLane, Homology, Springer-Verlag, Berlin, 1963. 
  12. [12] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Springer-Verlag, Berlin, 1987. 
  13. [13] P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972. 
  14. [14] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109. 
  15. [15] Y. B. Rudyak, On category weight and its applications, preprint. 
  16. [16] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 No. 56 (1983), 401-487. Zbl0561.57001
  17. [17] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1932), 147-238. Zbl0006.08304
  18. [18] H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980. 
  19. [19] A. R. Shastri, J. G. Williams and P. Zvengrowski, Kinks in general relativity, International Journal of Theoretical Physics 19 (1980), 1-23. Zbl0448.55009
  20. [20] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. 
  21. [21] N. Steenrod and D. B. A. Epstein, Cohomology Operations, The University of Princeton Press, Princeton, N.J., 1962. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.