Homotopy theory and circle actions on symplectic manifolds

John Oprea

Banach Center Publications (1998)

  • Volume: 45, Issue: 1, page 63-86
  • ISSN: 0137-6934

How to cite


Oprea, John. "Homotopy theory and circle actions on symplectic manifolds." Banach Center Publications 45.1 (1998): 63-86. <http://eudml.org/doc/208911>.

author = {Oprea, John},
journal = {Banach Center Publications},
keywords = {symplectic geometry; homotopy of circle actions},
language = {eng},
number = {1},
pages = {63-86},
title = {Homotopy theory and circle actions on symplectic manifolds},
url = {http://eudml.org/doc/208911},
volume = {45},
year = {1998},

AU - Oprea, John
TI - Homotopy theory and circle actions on symplectic manifolds
JO - Banach Center Publications
PY - 1998
VL - 45
IS - 1
SP - 63
EP - 86
LA - eng
KW - symplectic geometry; homotopy of circle actions
UR - http://eudml.org/doc/208911
ER -


  1. [ABKLR] B. Aebischer, M. Borer, M. Kalin, Ch. Leuenberger and H. M. Reimann, Symplectic Geometry, Progress in Math., vol. 124, Birkhäuser, 1994. 
  2. [AL] M. Audin and J. Lafontaine, Holomorphic Curves in Symplectic Geometry, Progress in Math., vol. 117, Birkhäuser, 1994. Zbl0802.53001
  3. [AM] R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley, 2nd ed., 1978. 
  4. [AP] C. Allday and V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics 32, Cambridge U. Press, 1993. Zbl0799.55001
  5. [Au1] M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Progress in Math., vol. 93, Birkhäuser, 1991. 
  6. [Au2] M. Audin, Exemples de variétés presque complexes, L'Enseignement Math. 37 (1991), 175-190. 
  7. [BG] C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518. Zbl0672.53036
  8. [Bes] A. Besse, Einstein Manifolds, Ergebnisse der Math. und ihrer Grenz. (3), vol. 10, Springer-Verlag, 1987. 
  9. [BoHi] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math. 80 (1958), 458-538. Zbl0097.36401
  10. [Br] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017
  11. [BH] W. Browder and W-C. Hsiang, G-Actions and the Fundamental Group, Invent. Math. 65 (1982), 411-424. Zbl0519.57034
  12. [DGMS] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  13. [Fr] T. Frankel, Fixed points and torsion on Kähler manifolds, Annals of Math. 70 no. 1 (1959), 1-8. Zbl0088.38002
  14. [G1] D. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23-50. Zbl0251.55018
  15. [G2] D. Gottlieb, The trace of an action and the degree of a map, Trans. Amer. Math. Soc. 293 (1986), 381-410. Zbl0593.57017
  16. [G3] D. Gottlieb, Lifting actions in fibrations, Lecture Notes in Math., vol. 657, Springer-Verlag, (1977), 217-254. 
  17. [GM] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, Birkhäuser, 1981. 
  18. [Has] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71. 
  19. [Has] A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Japan. J. Math. 2 (1976), 13-25. Zbl0346.57014
  20. [Kr] V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367. Zbl0148.16101
  21. [LO1] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  22. [LO2] G. Lupton and J. Oprea, z Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 no. 1 (1995), 261-288. Zbl0836.57019
  23. [Mas] W. Massey, The non-existence of almost complex structures on quaternionic projective spaces, Pac. J. Math. 12 (1962), 1379-1384. Zbl0112.14702
  24. [Mc1] D. McDuff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984), 353-366. Zbl0538.53041
  25. [Mc2] D. McDuff, Examples of simply-connected, symplectic non-Kählerian manifolds, J. Diff. Geom. 20 (1984), 267-277. Zbl0567.53031
  26. [Mc3] D. McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 no. 2 (1988), 149-160. Zbl0696.53023
  27. [McS] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Math. Monographs, Oxford U. Press, 1995. Zbl0844.58029
  28. [Mo] G. Mostow, Factor spaces of solvable groups, Annals of Math. 60 (1954), 1-27. Zbl0057.26103
  29. [No] K. Nomizu, On the cohomology of homogeneous spaces of nilpotent Lie groups, Annals of Math. 59 (1954), 531-538. Zbl0058.02202
  30. [On1] K. Ono, Equivariant projective imbedding theorem for symplectic manifolds, J. Fac. Sci. Univ. Tokyo IA Math. 35 (1988), 381-392. Zbl0655.53027
  31. [On2] K. Ono, Obstruction to circle group actions preserving symplectic structure, Hokkaido Math. J. 21 (1992), 99-102. Zbl0749.53020
  32. [On3] K. Ono, Some remarks on group actions in symplectic geometry, J. Fac. Sci. Univ. Tokyo 35 (1988), 431-437. Zbl0711.53025
  33. [Sp] E. Spanier, Algebraic Topology, McGraw-Hill, 1966. 
  34. [Su] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1978), 269-331. Zbl0374.57002
  35. [Th] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468. Zbl0324.53031
  36. [Ti] D. Tischler, Closed 2-forms and an embedding theorem for symplectic manifolds, J. Diff. Geom. 12 (1977), 229-235. Zbl0386.58001
  37. [TO] A. Tralle and J. Oprea, Symplectic manifolds with no Kähler structure, Lecture Notes in Math., vol. 1661, Springer-Verlag, 1997. Zbl0891.53001
  38. [Wa] R. Warfield, Nilpotent Groups, Lecture Notes in Math., vol. 513, Springer-Verlag, 1976. 
  39. [Yau] S. T. Yau, Remarks on the group of isometries of a riemannian manifold, Topology 16 (1977), 239-247. Zbl0372.53020

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.