Nonlinear analysis and quasiconformal mappings from the perspective of PDEs

Tadeusz Iwaniec

Banach Center Publications (1999)

  • Volume: 48, Issue: 1, page 119-140
  • ISSN: 0137-6934

Abstract

top
Contents Introduction 119 1. Quasiregular mappings 120 2. The Beltrami equation 121 3. The Beltrami-Dirac equation 122 4. A quest for compactness 124 5. Sharp L p -estimates versus variational integrals 125 6. Very weak solutions 128 7. Nonlinear commutators 129 8. Jacobians and wedge products 131 9. Degree formulas 134 References 136

How to cite

top

Iwaniec, Tadeusz. "Nonlinear analysis and quasiconformal mappings from the perspective of PDEs." Banach Center Publications 48.1 (1999): 119-140. <http://eudml.org/doc/208947>.

@article{Iwaniec1999,
abstract = {Contents Introduction 119 1. Quasiregular mappings 120 2. The Beltrami equation 121 3. The Beltrami-Dirac equation 122 4. A quest for compactness 124 5. Sharp $L^p$-estimates versus variational integrals 125 6. Very weak solutions 128 7. Nonlinear commutators 129 8. Jacobians and wedge products 131 9. Degree formulas 134 References 136},
author = {Iwaniec, Tadeusz},
journal = {Banach Center Publications},
keywords = {nonlinear analysis; quasiregular mappings; quasiconformal mappings; systems of PDEs; generalizations of analytic functions; Cauchy-Riemann equations},
language = {eng},
number = {1},
pages = {119-140},
title = {Nonlinear analysis and quasiconformal mappings from the perspective of PDEs},
url = {http://eudml.org/doc/208947},
volume = {48},
year = {1999},
}

TY - JOUR
AU - Iwaniec, Tadeusz
TI - Nonlinear analysis and quasiconformal mappings from the perspective of PDEs
JO - Banach Center Publications
PY - 1999
VL - 48
IS - 1
SP - 119
EP - 140
AB - Contents Introduction 119 1. Quasiregular mappings 120 2. The Beltrami equation 121 3. The Beltrami-Dirac equation 122 4. A quest for compactness 124 5. Sharp $L^p$-estimates versus variational integrals 125 6. Very weak solutions 128 7. Nonlinear commutators 129 8. Jacobians and wedge products 131 9. Degree formulas 134 References 136
LA - eng
KW - nonlinear analysis; quasiregular mappings; quasiconformal mappings; systems of PDEs; generalizations of analytic functions; Cauchy-Riemann equations
UR - http://eudml.org/doc/208947
ER -

References

top
  1. [A] S. S. Antman, Fundamental Mathematical Problems in the Theory of Nonlinear Elasticity, North-Holland, (1976), 33-54. 
  2. [AD] J.J. Alibert and B. Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rat. Mech. Anal. 117 (1992), 155-166. Zbl0761.26009
  3. [As] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. Zbl0815.30015
  4. [B] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977), 337-403. Zbl0368.73040
  5. [Ba] Z. M. Balogh, Jacobians in Sobolev spaces, preprint. 
  6. [Bo] B. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coeffieients, Mat. Sbornik 43 (1957), 451-503. 
  7. [Be] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206. Zbl0756.46017
  8. [BG] L. Boccardo and T. Gallouet, Non linear elliptic and parabolic equations involving measure data, Jour. Func. Anal. 87 (1989), 149-169. Zbl0707.35060
  9. [BBH] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 19. 
  10. [BK] D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998), 273-282. Zbl0902.26004
  11. [BL] R. Bañuelos and A. Lindeman, A martingale study of the Beurling-Ahlfors transform in R n , Journal of Funct. Anal. 145 (1997), 224-265. Zbl0876.60026
  12. [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in R n , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. Zbl0548.30016
  13. [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂f and ¯ f , preprint. Zbl0966.30001
  14. [BN1] H. Brezis and L. Nirenberg, Degree theory and BMO. Part I: Compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263. Zbl0852.58010
  15. [BN2] H. Brezis and L. Nirenberg, Degree theory and BMO. Part II: Manifolds with boundaries, Selecta Math. 2 (1996), 309-368. Zbl0868.58017
  16. [BIS] L. Budney, T. Iwaniec and B. Stroffolini, Removability of singularities of A-harmonic functions, Differential and Integral Equations 12 (1999), 261-274. Zbl1064.35505
  17. [Bu] D. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158, (1988), 75-94. 
  18. [BW] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), 575-600. Zbl0853.60040
  19. [CG] R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, Revista Matematica Iberoamericana 8 (1992), 45-67. Zbl0785.47025
  20. [CJMR] M. Cwikel, B. Jawerth, M. Milman and R. Rochberg, Differential estimates and commutators in interpolation theory, London Math. Soc. Lecture Notes 138 (1989), 170-220. Zbl0696.46050
  21. [CLMS] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286. Zbl0864.42009
  22. [Da] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin 1989. Zbl0703.49001
  23. [D] G. David, Solutions de l’équation de Beltrami avec | μ | = 1 , Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25-70. 
  24. [DM] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Non Linéaire 7 (1990), 1-26. Zbl0707.35041
  25. [DHM 1] G. Dolzmann, N. Hungerbühler and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), 545-574. Zbl0895.35029
  26. [DHM 2] G. Dolzmann, N. Hungerbühler and S. Müller, The p-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 353-364. Zbl0879.35052
  27. [DS] S. K. Donaldson and D. B. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181-252. 
  28. [EH] A. Eremenko and D. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc. 123 (1995), 2793-2797. Zbl0841.30013
  29. [EM] L. C. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonegative vorticity, J. Amer. Math. Soc. 7 (1994), 199-219. Zbl0802.35120
  30. [EsM] M. J. Esteban and S. Müller, Sobolev maps with integer degree and applications to Skyrme's problem, Proc. Roy. Soc. London 436 A (1992), 197-201. Zbl0757.49010
  31. [G] L. Greco, A remark on the equality det Df=Det Df, Diff. Int. Eq. 6 (1993), 1089-1100. Zbl0784.49013
  32. [Ge] F. W. Gehring, The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. Zbl0258.30021
  33. [GI] F. W. Gehring and T. Iwaniec, The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. 24 (1999), to appear. Zbl0929.30016
  34. [GIM] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms, Indiana University Math. J. 44 (1995), 305-339. Zbl0855.42009
  35. [GIS] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Mathematica 92 (1997), 249-258. Zbl0869.35037
  36. [GISS] L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini, Degree formulas for maps with nonintegrable Jacobian, Topological Methods in Nonlinear Analysis 6 (1995), 81-95. Zbl0854.58005
  37. [GMS] J. M. Giaquinta, G. Modica and J. Souček, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200. Zbl0822.55003
  38. [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford 1993. Zbl0780.31001
  39. [HK] J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatation, Arch. Rat. Mech. Anal. 125 (1993), 81-97. Zbl0792.30016
  40. [H] A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), 205-222. Zbl0856.30017
  41. [I 1] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136, (1992) 589-624. Zbl0785.30009
  42. [I 2] T. Iwaniec, Integrability theory of the Jacobians, Lipschitz Lectures, preprint No. 36, Sonderforschungsbereich 256, Bonn 1995, pp. 1-68. 
  43. [I 3] T. Iwaniec, Current advances in quasiconformal geometry and nonlinear analysis, Proceedings of the XVIth Rolf Nevanlinna Colloquium, Eds.: Laine/Martio, Walter de Gruyter & Co. (1996), pp. 59-80. Zbl0876.30025
  44. [I 4] T. Iwaniec, The failure of lower semicontinuity for the linear dilatation, Bull. London Mathematical Society 30 (1998), 55-61. Zbl0924.30031
  45. [I 5] T. Iwaniec, Nonlinear commutators and Jacobians, Lectures in El Escorial (Spain, 1996), special issue of the Journal of Fourier Analysis and Applications dedicated to Miguel de Guzman, Vol. 3 (1997), 775-796. 
  46. [I 6] T. Iwaniec, Nonlinear Cauchy-Riemann operators in n , Proc. AMS, to appear. 
  47. [IL 1] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rat. Mech. Anal. 125 (1993), 25-79. Zbl0793.58002
  48. [IL 2] T. Iwaniec and A. Lutoborski, Polyconvex functionals for nearly conformal deformations, SIAM J. Math. Anal., Vol. 27, No. 3 (1996), pp. 609-619. Zbl0847.30014
  49. [IM 1] T. Iwaniec and G. Martin, Quasiconformal mappings in even dimensions, Acta Math. 170 (1993), 29-81. Zbl0785.30008
  50. [IM 2] T. Iwaniec and G. Martin, Riesz transforms and related singular integrals, J. reine angew. Math. 473 (1996), 25-57. Zbl0847.42015
  51. [IMNS] T. Iwaniec, L. Migliaccio, L. Nania and C. Sbordone, Integrability and removability results for quasiregular mappings in high dimensions, Math. Scand. 75 (1994), 263-279. Zbl0824.30009
  52. [IMS] T. Iwaniec, M. Mitrea and C. Scott, Boundary value estimates for harmonic forms, Proc. Amer. Math. Soc. 124 (1996), pp. 1467-1471. Zbl0854.31002
  53. [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Annali di Matematica pura ed Applicata, to appear. Zbl0963.58003
  54. [IŠ] T. Iwaniec and V. Šverak, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188. Zbl0784.30015
  55. [IS 1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal. 119 (1992), 129-143. Zbl0766.46016
  56. [IS 2] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. 
  57. [IS 3] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO-coefficients, Journal d'Analyse Mathématique 74 (1998), 183-212. Zbl0909.35039
  58. [IV 1] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Royal Soc. Edinburgh (1999). 
  59. [IV 2] T. Iwaniec and A. Verde, Note on the operator 𝓛(f)=f log|f|, submitted to the Journal of Functional Analysis. 
  60. [Ka1] N. J. Kalton, Differential methods in interpolation theory, notes of the lectures at the University of Arkansas, April 10-13, 1996. 
  61. [Ka2] N. J. Kalton, Nonlinear commutators in interpolation theory, Memoirs AMS 385, vol. 73, (1988), 1-85. 
  62. [K] T. Kilpeläinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa 19 (1992), 591-613. Zbl0797.35052
  63. [L] J. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515-1537. Zbl0796.35061
  64. [Li] A. Lindeman, Martingales and the n-dimensional Beurling-Ahlfors transform, preprint (1996). 
  65. [LM] H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, 1989. 
  66. [McM] C. T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), 304-314. Zbl0941.37030
  67. [Mi] M. Milman, Higher order commutator in the real method of interpolation, Journal D'Analyse Math. 66 (1995), 37-56. 
  68. [M] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. Zbl0141.19407
  69. [MR] M. Milman and R. Rochberg, The role of cancellation in interpolation theory, Contemporary Math. 189 (1995), 403-410. Zbl0902.46048
  70. [MS] M. Milman and T. Schonbek, A note on second order estimates in interpolation theory and applications, Proc. AMS 110 (1990), 961-969. Zbl0717.46066
  71. [Mu1] F. Murat, Compacité par compensations, Ann. Sc. Norm. Sup. Pisa 5 (1978), 489-507. Zbl0399.46022
  72. [Mu2] F. Murat, Soluciones renormalizades de EDP elipticas no linear, Publications du Laboratoire d'Analyse Numerique, Paris (1993). 
  73. [Ma] J. Manfredi, Quasiregular mappings from the multilinear point of view, Ber. University, Jyväskylä Math. Inst. 68 (1995), 55-94. Zbl0843.30020
  74. [MV] J. Manfredi and E. Villamor, Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. 32 (1995), 235-240. Zbl0857.30020
  75. [Mü] S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. 21 (1989), 245-248. Zbl0689.49006
  76. [R] H. M. Reimann, Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen, Comment. Math. Helv. 47 (1972), 397-408. 
  77. [RRT] J. W. Robbin, R. C. Roger and B. Temple, On weak continuity and the Hodge decomposition, Trans. AMS 303 (1987), 609-618. Zbl0634.35005
  78. [RY] T. Rivere and D. Ye, Resolutions of the prescribed volume form equation, Nonlinear Differential Equations Appl. 3 (1996), 323-369.. 
  79. [Ri] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin 1993. 
  80. [Re 1] Y. G. Reshetnyak, On extremal properties of mappings with bounded distortion, Sibirsk. Mat. Z. 10 (1969), 1300-1310 (Russian). 
  81. [Re 2] Y.G. Reshetnyak, Space Mappings with Bounded Distortion, Trans. Math. Monographs 73, Amer. Math. Soc., 1989. 
  82. [Ro] R. Rochberg, Higher order estimates in complex interpolation theory, Pacific J. Math. 174 (1996), 247-267. Zbl0866.46047
  83. [RW] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315-347. Zbl0539.46049
  84. [S] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305-310. Zbl0182.47803
  85. [Sc] C. Scott, L p -theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995), 2075-2096. Zbl0849.58002
  86. [Se] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. in PDEs 19 (1994), 277-319. Zbl0836.35030
  87. [Š] V. Šverak, Rank-one convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh 120A (1992), 185-189. Zbl0777.49015
  88. [Ta] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics, Heriotwatt Symposium IV, Research Notes in Mathematics, R. J. Knops (ed.), vol. 39, Pitman, London, (1979), 136-212. 
  89. [T 1] P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318-346. Zbl0603.30026
  90. [T 2] P. Tukia, Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991) 47-69. 
  91. [V 1] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, 1971. Zbl0221.30031
  92. [V 2] J. Väisälä, Questions on quasiconformal maps in space, in: Quasiconformal Mappings and Analysis, Springer, New York, 1998, 369-374. Zbl0892.30020
  93. [VG] S. K. Vodop'yanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sibirsk. Mat. Z. 17 (1976), 515-531 (Russian). 
  94. [Vu] M. Vuorinen (ed.), Quasiconformal Space Mappings, A collection of Surveys 1960-1990 (Lecture Notes in Math. 1508), Springer-Verlag, Berlin 1992. 
  95. [W] W. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. Zbl0181.11501
  96. [Ye] D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 275-296. Zbl0834.35047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.