Characterizations of quasidisks

Frederick Gehring

Banach Center Publications (1999)

  • Volume: 48, Issue: 1, page 11-41
  • ISSN: 0137-6934

How to cite

top

Gehring, Frederick. "Characterizations of quasidisks." Banach Center Publications 48.1 (1999): 11-41. <http://eudml.org/doc/208948>.

@article{Gehring1999,
author = {Gehring, Frederick},
journal = {Banach Center Publications},
keywords = {quasidisks},
language = {eng},
number = {1},
pages = {11-41},
title = {Characterizations of quasidisks},
url = {http://eudml.org/doc/208948},
volume = {48},
year = {1999},
}

TY - JOUR
AU - Gehring, Frederick
TI - Characterizations of quasidisks
JO - Banach Center Publications
PY - 1999
VL - 48
IS - 1
SP - 11
EP - 41
LA - eng
KW - quasidisks
UR - http://eudml.org/doc/208948
ER -

References

top
  1. [1] L. V. Ahlfors, Complex analysis, McGraw-Hill 1979. Zbl0395.30001
  2. [2] L. V. Ahlfors, Remarks on the Neumann-Poincaré integral equation, Pacific J. Math. 2 (1952), 271-280. Zbl0047.07907
  3. [3] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301. 
  4. [4] L. V. Ahlfors, Conformal invariants, McGraw-Hill 1973. 
  5. [5] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. Zbl0815.30015
  6. [6] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. d'Analyse Math. 46 (1986), 16-57. Zbl0628.30026
  7. [7] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. reine angew. Math. 255 (1972), 23-43. Zbl0239.30015
  8. [8] J. Becker and C. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. reine angew. Math. 354 (1984), 74-94. 
  9. [9] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. Zbl0072.29602
  10. [10] M. Bonk, The support points of the unit ball in Bloch space, J. Functional Anal. 123 (1994), 318-335. Zbl0808.46075
  11. [11] B. Brechner and T. Erkama, On topologically and quasiconformally homogeneous continua, Ann. Acad. Sci. Fenn. 4 (1978/1979), 207-208. Zbl0406.30014
  12. [12] D. Calvis, The inner radius of univalence of normal circular triangles and regular polygons, Complex Variables 4 (1985), 295-304. Zbl0541.30005
  13. [13] T. Erkama, Quasiconformally homogeneous curves, Mich. Math. J. 24 (1977), 157-159. Zbl0363.30030
  14. [14] J. L. Fernández, D. Hamilton and J. Heinonen, Harmonic measure and quasicircles, preprint. 
  15. [15] J. L. Fernández, J. Heinonen and O. Martio, Quasilines and conformal mappings, J. d'Analyse Math. 52 (1989), 117-132. Zbl0677.30012
  16. [16] F. W. Gehring, Quasiconformal mappings of slit domains in three space, J. Math. Mech. 18 (1969), 689-703. Zbl0177.33901
  17. [17] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572. Zbl0373.30013
  18. [18] F. W. Gehring, Injectivity of local quasi-isometries, Comment. Math. Helv. 57 (1982), 202-220. Zbl0528.30010
  19. [19] F. W. Gehring, Characteristic properties of quasidisks, Les Presses de l'Université de Montréal (1982), 1-97. 
  20. [20] F. W. Gehring, Extension of quasiisometric embeddings of Jordan curves, Complex Variables 5 (1986), 245-263. Zbl0603.30024
  21. [21] F. W. Gehring, Uniform domains and the ubiquitous quasidisk, Jber. Deutsche Math. Verein. 89 (1987), 88-103. Zbl0615.30016
  22. [22] F. W. Gehring and K. Hag, Remarks on uniform and quasiconformal extension domains, Complex Variables 9 (1987), 175-188. Zbl0638.30022
  23. [23] F. W. Gehring and K. Hag, Hyperbolic geometry and disks, J. Comp. Appl Math. 104 (1999) (to appear). Zbl0943.30028
  24. [24] F. W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. 272 (1959), 3-9. Zbl0090.05302
  25. [25] F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. d'Analyse Math. 45 (1985), 181-206. Zbl0596.30031
  26. [26] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. d'Analyse Math. 36 (1979), 50-74. Zbl0449.30012
  27. [27] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. d'Analyse Math. 30 (1976), 172-199. Zbl0349.30019
  28. [28] F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6 (1973), 504-512. Zbl0258.30020
  29. [29] J. Gevirtz, Injectivity of quasi-isometric mappings of balls, Proc. Amer. Math. Soc. 85 (1982), 345-349. Zbl0496.46026
  30. [30] V. M. Gol’dstein and S. K. Vodop’janov, Prolongement des fonctions de classe L 1 p et applications quasi conformes, C. R. Acad. Sc. Paris 290 (1980), 453-456. 
  31. [31] K. Hag, What is a disk?, this volume. Zbl0938.46022
  32. [32] W. K. Hayman and J.-M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403. Zbl0473.30012
  33. [33] D. S. Jerison and C. E. Kenig, Hardy spaces, A , and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. Zbl0509.30025
  34. [34] F. John, On quasi-isometric mappings, II, Comm. Pure Appl. Math. 22 (1969), 265-278. Zbl0167.42503
  35. [35] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66. 
  36. [36] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. Zbl0489.30017
  37. [37] B. N. Kimel'fel'd, Homogeneous regions on the conformal sphere, Mat. Zametki 8 (1970), 321-328 (in Russian). 
  38. [38] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. 1 (1987), 19-24. Zbl0563.30016
  39. [39] N. Langmeyer, The quasihyperbolic metric, growth, and John domains, University of Michigan thesis, 1996. Zbl0904.30014
  40. [40] M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci. Fenn. 5 (1980), 45-47. Zbl0402.30019
  41. [41] O. Lehto, Remarks on Nehari's theorem about the Schwarzian derivative and schlicht functions, J. d'Analyse Math. 36 (1979), 184-190. Zbl0447.30012
  42. [42] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag 1987. Zbl0606.30001
  43. [43] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag 1973. Zbl0267.30016
  44. [44] X. Liu and D. Minda, Distortion theorems for Bloch functions, Trans. Amer. Math. Soc. 333 (1992), 325-338. Zbl0771.30022
  45. [45] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. 4 (1978-1979), 383-401. Zbl0406.30013
  46. [46] B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. Math. 91 (1970), 607-639. Zbl0197.06003
  47. [47] L. Miller-Van Wieren, Univalence criteria on classes of rectangles and equiangular hexagons, Ann. Acad. Sci. Fenn. 22 (1997), 407-424. Zbl0924.30023
  48. [48] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. Zbl0035.05104
  49. [49] B. G. Osgood, Some properties of f''/f' and the Poincaré metric, Indiana Univ. Math. J. 31 (1982), 449-461. Zbl0503.30014
  50. [50] K. Øyma, Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), 687-689. Zbl0752.30014
  51. [51] K. Øyma, The Hayman-Wu constant, Proc. Amer. Math. Soc. 119 (1993), 337-338. Zbl0782.30021
  52. [52] B. P. Palka, preprint. 
  53. [53] A. Pfluger, Über die Konstruktion Riemannscher Flächen durch Verheftung, J. Indian Math. Soc. 24 (1960), 401-412. Zbl0112.05303
  54. [54] C. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag 1992. 
  55. [55] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260-276. Zbl0289.30027
  56. [56] H. M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes Math. 487, Springer-Verlag 1975. Zbl0324.46030
  57. [57] S. Rickman, Extension over quasiconformally equivalent curves, Ann. Acad. Sci. Fenn. 436 (1969), 3-12. Zbl0181.35902
  58. [58] J. Sarvas, Boundary of a homogeneous Jordan domain, Ann. Acad. Sci. Fenn. 10 (1985), 511-514. Zbl0597.30024
  59. [59] G. Springer, Fredholm eigenvalues and quasiconformal mapping, Acta Math. 111 (1964), 121-142. Zbl0147.07103
  60. [60] D. Stowe, Injectivity and the pre-Schwarzian derivative, Mich. Math. J. 45 (1998), 537-546. Zbl0958.30007
  61. [61] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Annals Math. Studies 97, Princeton Univ. Press 1981. Zbl0567.58015
  62. [62] P. Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. 5 (1980), 73-78. Zbl0411.30038
  63. [63] P. Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Sci. Fenn. 6 (1981), 89-94. Zbl0431.30011
  64. [64] J. Väisälä, On quasiconformal mappings of a ball, Ann. Acad. Sci. Fenn. 304 (1961), 3-7. Zbl0098.28103
  65. [65] M. Walker, Linearly locally connected sets and quasiconformal mappings, Ann. Acad. Sci. Fenn. 11 (1986), 77-86. Zbl0533.30018
  66. [66] S. Yang, QED domains and NED sets in R ¯ n , Trans. Amer. Math. Soc. 334 (1992), 97-120. Zbl0768.30015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.