What is a disk?
Banach Center Publications (1999)
- Volume: 48, Issue: 1, page 43-53
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topHag, Kari. "What is a disk?." Banach Center Publications 48.1 (1999): 43-53. <http://eudml.org/doc/208951>.
@article{Hag1999,
abstract = {This paper should be considered as a companion report to F.W. Gehring’s survey lectures “Characterizations of quasidisks” given at this Summer School [7]. Notation, definitions and background results are given in that paper. In particular, D is a simply connected proper subdomain of $R^2$ unless otherwise stated and D* denotes the exterior of D in $\overline\{R\}^2$. Many of the characterizations of quasidisks have been motivated by looking at properties of euclidean disks. It is therefore natural to go back and ask if any of the original properties in fact characterize euclidean disks. We follow the procedure in Gehring’s lectures and look at four different categories of properties: 1. Geometric properties, 2. Conformal invariants, 3. Injectivity criteria, 4. Extension properties. As we shall see, the answers are not equally easy to obtain and not always positive. There are, in fact, still many interesting open questions.},
author = {Hag, Kari},
journal = {Banach Center Publications},
keywords = {disk; half plane; conformal selfmapping; conformal extension},
language = {eng},
number = {1},
pages = {43-53},
title = {What is a disk?},
url = {http://eudml.org/doc/208951},
volume = {48},
year = {1999},
}
TY - JOUR
AU - Hag, Kari
TI - What is a disk?
JO - Banach Center Publications
PY - 1999
VL - 48
IS - 1
SP - 43
EP - 53
AB - This paper should be considered as a companion report to F.W. Gehring’s survey lectures “Characterizations of quasidisks” given at this Summer School [7]. Notation, definitions and background results are given in that paper. In particular, D is a simply connected proper subdomain of $R^2$ unless otherwise stated and D* denotes the exterior of D in $\overline{R}^2$. Many of the characterizations of quasidisks have been motivated by looking at properties of euclidean disks. It is therefore natural to go back and ask if any of the original properties in fact characterize euclidean disks. We follow the procedure in Gehring’s lectures and look at four different categories of properties: 1. Geometric properties, 2. Conformal invariants, 3. Injectivity criteria, 4. Extension properties. As we shall see, the answers are not equally easy to obtain and not always positive. There are, in fact, still many interesting open questions.
LA - eng
KW - disk; half plane; conformal selfmapping; conformal extension
UR - http://eudml.org/doc/208951
ER -
References
top- [1] L. V. Ahlfors, Complex analysis, McGraw-Hill 1979. Zbl0395.30001
- [2] L. V. Ahlfors, Conformal invariants, McGraw-Hill 1973.
- [3] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
- [4] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. d'Analyse Math. 46 (1986), 16-57. Zbl0628.30026
- [5] J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. reine angew. Math. 354 (1984), 74-94,
- [6] M. Berger, Geometry I and II, Springer-Verlag 1980.
- [7] F. W. Gehring, Characterizations of quasidisks, this volume. Zbl0934.30016
- [8] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comm. Math. Helv. 52 (1977), 561-572. Zbl0373.30013
- [9] F. W. Gehring, Injectivity of local quasi-isometries, Comm. Math. Helv. 57 (1982), 202-220. Zbl0528.30010
- [10] F. W. Gehring and K. Hag, Hyperbolic geometry and disks, in: Proceedings of the Conference on Continued Fractions and Geometric Function Theory - Trondheim (to appear). Zbl0943.30028
- [11] F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. d'Analyse Math. 36 (1979), 50-74. Zbl0449.30012
- [12] V. M. Gol’dstein and S. K. Vodop’janov, Prolongement des fonctions de classe et applications quasi conformes, C. R. Acad. Sc. Paris 290 (1980), 453-456.
- [13] F. John, On quasi-isometric mappings II, Comm. Pure Appl. Math. 22 (1969), 265-278. Zbl0167.42503
- [14] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. Zbl0489.30017
- [15] N. Langmeyer, The quasihyperbolic metric, growth, and John domains, Univ. Michigan Thesis 1996. Zbl0904.30014
- [16] M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci Fenn. 5 (1980), 45-47. Zbl0402.30019
- [17] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag 1973. Zbl0267.30016
- [18] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. 4 (1978-79), 383-401. Zbl0406.30013
- [19] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. Zbl0035.05104
- [20] M. H. A. Newman, The topology of plane point sets, Cambridge University Press 1954.
- [21] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag 1992.
- [22] S. Rickman, Extensions over quasiconformally equivalent curves, Ann Acad. Sci. Fenn. 10 (1985), 511-514.
- [23] D. Stowe, Injectivity and the pre-Schwarzian derivative, Mich. Math. J. 45 (1998), 537-546. Zbl0958.30007
- [24] M. Walker, Linearly locally connected sets and quasiconformal mappings, Ann. Acad. Sci. Fenn. 11 (1986), 77-86. Zbl0533.30018
- [25] S. Yang, QED domains and NED sets in , Trans. Amer. Math. Soc. 334 (1992), 97-120. Zbl0768.30015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.