The Reidemeister trace and the calculation of the Nielsen number

Evelyn Hart

Banach Center Publications (1999)

  • Volume: 49, Issue: 1, page 151-157
  • ISSN: 0137-6934

How to cite


Hart, Evelyn. "The Reidemeister trace and the calculation of the Nielsen number." Banach Center Publications 49.1 (1999): 151-157. <>.

author = {Hart, Evelyn},
journal = {Banach Center Publications},
keywords = {generalized Lefschetz number; Nielsen number; Reidemeister trace; fixed point theory},
language = {eng},
number = {1},
pages = {151-157},
title = {The Reidemeister trace and the calculation of the Nielsen number},
url = {},
volume = {49},
year = {1999},

AU - Hart, Evelyn
TI - The Reidemeister trace and the calculation of the Nielsen number
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 151
EP - 157
LA - eng
KW - generalized Lefschetz number; Nielsen number; Reidemeister trace; fixed point theory
UR -
ER -


  1. [BC] W. Bosma, J. J. Cannon, and G. Mathews, Programming with algebraic structures: Design of the Magma language, in: Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation, Oxford, July 20-22, 1994, M. Giesbrecht (ed.), Association for Computing Machinery, 1994, 52-57. Zbl0964.68595
  2. [Br] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., 1971. 
  3. [CF] R. Cromwell and R. Fox, An Introduction to Knot Theory, Ginn and Co., 1963. 
  4. [DHT] O. Davey, E. Hart and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. 348 (1996), 3245-3266. Zbl0861.55003
  5. [FHu1] E. Fadell and S. Husseini, Local fixed point theory for non-simply connected manifolds, Illinois J. Math. 25 (1981), 673-699. Zbl0469.55004
  6. [FHu2] E. Fadell and S. Husseini, The Nielsen number on surfaces, in: Topological Methods in Nonlinear Functional Analysis (Toronto, Ont., 1982), Contemp. Math., 21, Amer. Math. Soc., Providence, R.I., 1983, 59-98. 
  7. [FHa] J. Fares and E. Hart, A generalized Lefschetz number for local Nielsen fixed point theory, Topology Appl. 59 (1994), 1-23. Zbl0807.55003
  8. [F1] D. Ferrario, Generalized Lefschetz numbers of pushout maps, Topology Appl. 68 (1996), 67-81. Zbl0845.55003
  9. [F2] D. Ferrario, Computing Reidemeister classes, Fund. Math. 158 (1998), 1-18. 
  10. [G1] R. Geoghegan, Fixed points in finitely dominated compacta: the geometric meaning of a conjecture of H. Bass, in: Shape Theory and Geometric Topology (Dubrovnik 1981), S. Mardešić and J. Segal (eds.), Lecture Notes in Math., 870, Springer-Verlag, 1981, 6-22. 
  11. [G2] R. Geoghegan, Nielsen Fixed Point Theory, in: Handbook of Geometric Topology, R. J. Daverman and R. B. Sher (eds.), to be published by Elsevier. 
  12. [GN1] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994), 397-446. Zbl0812.55001
  13. [GN2] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), 683-719. Zbl0821.55001
  14. [Ha] E. Hart, Computation of the local generalized H-Lefschetz number, Topology Appl. 61 (1995), 115-135. Zbl0841.55001
  15. [HK] E. Hart and E. Keppelmann, Explorations in Nielsen periodic point theory for the double torus, Topology Appl. 95 (1999), 1-30. Zbl1007.55002
  16. [Hu] S. Husseini, Generalized Lefschetz numbers, Trans. Amer. Math. Soc. 272 (1982), 247-274. Zbl0507.55001
  17. [J1] B. Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172 (1996), 151-185. Zbl0855.55001
  18. [J2] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, Rhode Island, 1983. 
  19. [J3] B. Jiang, Bounds for fixed points on surfaces, Math. Ann. 311 (1998), 467-479. Zbl0903.55003
  20. [JG] B. Jiang and J. Guo, Fixed points of surface diffeomorphisms, Pacific J. Math. 160 (1993), 67-89. Zbl0829.55001
  21. [K] M. Kelly, Minimal surface maps, fixed point indices and a Jiang/Guo type inequality, these proceedings. Zbl0959.55003
  22. [McC] D. McCord, An estimate of the Nielsen number and an example concerning the Lefschetz fixed point theorem, Pacific J. Math. 66 (1976), 195-203. Zbl0342.55005
  23. [NW] B. Norton-Odenthal and P. Wong, A relative generalized Lefschetz number, Topology Appl. 56 (1994), 141-157. Zbl0807.55004
  24. [R] K. Reidemeister, Complexes and homotopy chains, Bull. Amer. Math. Soc. 56 (1950), 297-307. Zbl0037.39602
  25. [S] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473. Zbl0553.55001
  26. [We] F. Wecken, Fixpunktklassen, I, II, III, Math. Ann. 117 (1941), 659-671; 118 (1942), 216-234 and 544-577. 
  27. [Wa] J. Wagner, An algorithm for calculating the Nielsen number on surfaces with boundary, Trans. Amer. Math. Soc. 351 (1999), 41-62. Zbl0910.55001
  28. [Wo] P. Wong, private communication, 1996. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.