The Wecken property of the projective plane

Boju Jiang

Banach Center Publications (1999)

  • Volume: 49, Issue: 1, page 223-225
  • ISSN: 0137-6934

Abstract

top
A proof is given of the fact that the real projective plane P 2 has the Wecken property, i.e. for every selfmap f : P 2 P 2 , the minimum number of fixed points among all selfmaps homotopic to f is equal to the Nielsen number N(f) of f.

How to cite

top

Jiang, Boju. "The Wecken property of the projective plane." Banach Center Publications 49.1 (1999): 223-225. <http://eudml.org/doc/208962>.

@article{Jiang1999,
abstract = {A proof is given of the fact that the real projective plane $P^2$ has the Wecken property, i.e. for every selfmap $f:P^2 → P^2$, the minimum number of fixed points among all selfmaps homotopic to f is equal to the Nielsen number N(f) of f.},
author = {Jiang, Boju},
journal = {Banach Center Publications},
keywords = {fixed point; Nielsen number; projective plane; Wecken property},
language = {eng},
number = {1},
pages = {223-225},
title = {The Wecken property of the projective plane},
url = {http://eudml.org/doc/208962},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Jiang, Boju
TI - The Wecken property of the projective plane
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 223
EP - 225
AB - A proof is given of the fact that the real projective plane $P^2$ has the Wecken property, i.e. for every selfmap $f:P^2 → P^2$, the minimum number of fixed points among all selfmaps homotopic to f is equal to the Nielsen number N(f) of f.
LA - eng
KW - fixed point; Nielsen number; projective plane; Wecken property
UR - http://eudml.org/doc/208962
ER -

References

top
  1. [B1] L. E. J. Brouwer, Über die Minimalzahl der Fixpunkte bei den Klassen von eindeutigen stetigen Transformationen der Ringflächen, Math. Ann. 82 (1921) 94-96. Zbl47.0528.01
  2. [B2] L. E. J. Brouwer, Aufzählung der Abbildungsklassen endlichfach zusammenhängender Flächen, Math. Ann. 82 (1921) 280-286. Zbl48.0649.01
  3. [Br] R. F. Brown, Nielsen fixed point theory on manifolds, these proceedings. 
  4. [DHT] O. Davey, E. Hart and K. Trapp, Computation of Nielsen numbers for maps of closed surfaces, Trans. Amer. Math. Soc. 348 (1996) 3245-3266.. Zbl0861.55003
  5. [GH] M. J. Greenberg and J. R. Harper, Algebraic Topology, A First Course, Benjamin/Cummings, Reading, Massachusetts, 1981. Zbl0498.55001
  6. [Ha] B. Halpern, Periodic points on the Klein bottle, preprint, 1978. 
  7. [HKW] P. Heath, E. Keppelmann and P. Wong, Addition formulae for Nielsen numbers and for Nielsen type numbers of fiber preserving maps, Topology Appl. 67 (1995) 133-157. Zbl0845.55004
  8. [H1] H. Hopf, Über Mindestzahlen von Fixpunkten, Math. Z. 26 (1927) 762-774. Zbl53.0554.01
  9. [H2] H. Hopf, Zur Topologie der Abbildungen von Mannigfaltigkeiten. I, Neue Darstellung der Theorie des Abbildungsgrades für topologische Mannigfaltigkeiten, Math. Ann. 100 (1928) 579-608; II, Klasseninvarianten von Abbildungen, Math. Ann. 102 (1929) 562-623. Zbl54.0611.02
  10. [J] B. Jiang, On the least number of fixed points, Amer. J. Math. 102 (1980) 749-763. Zbl0455.55001
  11. [O] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. 58 (1953) 458-480. Zbl0052.19901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.