Wecken theorems for Nielsen intersection theory
Banach Center Publications (1999)
- Volume: 49, Issue: 1, page 235-252
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Brooks and R. F. Brown, A lower bound for the Δ-Nielsen number, Trans. Amer. Math. Soc. 143 (1969), 555-564. Zbl0196.26603
- [2] R. Brooks, The number of roots of f(x) = a, Bull. Amer. Math. Soc. 76 (1970), 1050-1052. Zbl0204.23202
- [3] R. Brooks, On the sharpness of the and Nielsen numbers, J. Reine Angew. Math. 259 (1973), 101-108.
- [4] R. Dobreńko and Z. Kucharski, On the generalization of the Nielsen number, Fund. Math. 134 (1990), 1-14. Zbl0719.55002
- [5] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. Zbl0787.55003
- [6] A. Fathi, F. Laudenbach et V. Poénaru, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque 66-67 (1979).
- [7] M. Hirsch, Differential Topology, Springer-Verlag, Berlin, 1976. Zbl0356.57001
- [8] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, RI, 1983.
- [9] B. Jiang, Fixed points and braids, Invent. Math. 75 (1984), 69-74. Zbl0565.55005
- [10] C. McCord, A Nielsen theory for intersection numbers, Fund. Math. 152 (1997), 117-150. Zbl0882.55001
- [11] C. McCord, The three faces of Nielsen: comparing coincidence numbers, intersection numbers and root numbers, in preparation.
- [12] J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press, 1965. Zbl0161.20302