Equivariant Nielsen theory

Peter Wong

Banach Center Publications (1999)

  • Volume: 49, Issue: 1, page 253-258
  • ISSN: 0137-6934

How to cite

top

Wong, Peter. "Equivariant Nielsen theory." Banach Center Publications 49.1 (1999): 253-258. <http://eudml.org/doc/208965>.

@article{Wong1999,
author = {Wong, Peter},
journal = {Banach Center Publications},
keywords = {Nielsen number; fixed point theory; homogeneous space; equivariant maps; degree; root theory; equivariant map; fixed point},
language = {eng},
number = {1},
pages = {253-258},
title = {Equivariant Nielsen theory},
url = {http://eudml.org/doc/208965},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Wong, Peter
TI - Equivariant Nielsen theory
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 253
EP - 258
LA - eng
KW - Nielsen number; fixed point theory; homogeneous space; equivariant maps; degree; root theory; equivariant map; fixed point
UR - http://eudml.org/doc/208965
ER -

References

top
  1. [BoG] L. Borsari and D. Gonçalves, G-deformation to fixed point free maps via obstruction theory, unpublished (1989). 
  2. [B] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x)=a, Amer. J. Math. 95 (1973), 720-728. Zbl0319.55015
  3. [Br] R. F. Brown, Nielsen fixed point theory on manifolds, these proceedings. 
  4. [Du] H. Duan, The Lefschetz number of selfmaps of Lie groups, Proc. Amer. Math. Soc. 104 (1988), 1284-1286. Zbl0689.55005
  5. [F] E. Fadell, Two vignettes in fixed point theory, in: Topological Fixed Point Theory and Applications (Tianjin, 1988), B. Jiang (ed.), Lecture Notes in Math. 1411, Springer, Berlin, 1989, 46-51. 
  6. [FW] E. Fadell and P. Wong, On deforming G-maps to be fixed point free, Pacific J. Math. 132 (1988), 277-281. Zbl0612.58007
  7. [Fa] P. Fagundes, Equivariant Nielsen coincidence theory, in: 10th Brazilian Topology Meeting (São Carlos, 1996), P. Schweitzer (ed.), Matemática Contempoȓanea 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 1997, 117-142. 
  8. [GW] D. Gonçalves and P. Wong, Homogeneous spaces in coincidence theory, in: 10th Brazilian Topology Meeting (São Carlos, 1996), P. Schweitzer (ed.), Matemática Contempoȓanea 13, Sociedade Brasileira de Matemática, Rio de Janeiro, 1997, 143-158. 
  9. [J] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983. Zbl0512.55003
  10. [K] T. Kiang, The Theory of Fixed Point Classes, Science Press, Springer, Berlin-Beijing, 1989. Zbl0676.55001
  11. [S] H. Schirmer, Mindestzahlen von Koinzidenzpunkten, J. Reine Angew. Math. 194 (1955), 21-39. 
  12. [V] A. Vidal, Äquivariante Hindernistheorie für G-Deformationen, Dissertation, Universität Heidelberg, Heidelberg, 1985. 
  13. [Wi] D. Wilczyński, Fixed point free equivariant homotopy classes, Fund. Math. 123 (1984), 47-60. Zbl0548.55002
  14. [W1] P. Wong, Equivariant Nielsen fixed point theory and periodic points, in: Nielsen Theory and Dynamical Systems (Mt. Holyoke, 1992), C. McCord (ed.), Contemp. Math. 152, Amer. Math. Soc., Providence, 1993, 341-350. 
  15. [W2] P. Wong, Fixed point theory for homogeneous spaces, Amer. J. Math. 120 (1998), 23-42. Zbl0908.55002
  16. [W3] P. Wong, Root theory for G-maps, in preparation. 
  17. [W4] P. Wong, Equivariant Nielsen fixed point theory for G-maps, Pacific J. Math. 150 (1991), 179-200. Zbl0691.55004
  18. [W5] P. Wong, Equivariant Nielsen numbers, Pacific J. Math. 159 (1993), 153-175. Zbl0739.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.