Invariant properties of the generalized canonical mappings

Stanisław Janeczko

Banach Center Publications (1999)

  • Volume: 50, Issue: 1, page 151-161
  • ISSN: 0137-6934

Abstract

top
One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.

How to cite

top

Janeczko, Stanisław. "Invariant properties of the generalized canonical mappings." Banach Center Publications 50.1 (1999): 151-161. <http://eudml.org/doc/209003>.

@article{Janeczko1999,
abstract = {One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.},
author = {Janeczko, Stanisław},
journal = {Banach Center Publications},
keywords = {boundary of a smooth compact convex region; cotangent bundle; symplectic billiard map; periodic orbit; symplectic invariant; length spectrum},
language = {eng},
number = {1},
pages = {151-161},
title = {Invariant properties of the generalized canonical mappings},
url = {http://eudml.org/doc/209003},
volume = {50},
year = {1999},
}

TY - JOUR
AU - Janeczko, Stanisław
TI - Invariant properties of the generalized canonical mappings
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 151
EP - 161
AB - One of the fundamental objectives of the theory of symplectic singularities is to study the symplectic invariants appearing in various geometrical contexts. In the paper we generalize the symplectic cohomological invariant to the class of generalized canonical mappings. We analyze the global structure of Lagrangian Grassmannian in the product symplectic space and describe the local properties of generic symplectic relations.
LA - eng
KW - boundary of a smooth compact convex region; cotangent bundle; symplectic billiard map; periodic orbit; symplectic invariant; length spectrum
UR - http://eudml.org/doc/209003
ER -

References

top
  1. [1] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monogr. Math. 82, Birkhäuser, Boston, 1985. 
  2. [2] A. P. Fordy, A. B. Shabat, and A. P. Veselov, Factorization and Poisson correspondences, Teoret. Mat. Fiz. 105:2 (1995), 225-245; reprinted in: Theoret. and Math. Phys. 105 (1995), 1369-1386. Zbl0865.58029
  3. [3] V. Guillemin, R. B. Melrose, A cohomological invariant of discrete dynamical systems, in: E. B. Christoffel. The influence of his work on mathematics and the physical sciences, P. L. Butzer and F. Fehér (eds.), Birkhäuser, Basel, 1981, 672-679. 
  4. [4] V. Guillemin, S. Sternberg, Some problems in integral geometry and some related problems in micro-local analysis, Amer. J. Math. 101 (1979), 915-955. Zbl0446.58019
  5. [5] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984. Zbl0576.58012
  6. [6] S. Janeczko, Classification of lagrangian stars and their symplectic invariants, J. Phys. A 31 (1998), 3677-3685. Zbl0907.58016
  7. [7] S. Janeczko, Generating families for images of Lagrangian submanifolds and open swallowtails, Math. Proc. Cambridge Philos. Soc. 100 (1986), 91-107. Zbl0635.58012
  8. [8] S. Janeczko, Constrained Lagrangian submanifolds over singular constraining varieties and discriminant varieties, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), 1-26. Zbl0611.58026
  9. [9] J. B. Keller, Rays, waves and asymptotics, Bull. Amer. Math. Soc. 84 (1978), 727-750. Zbl0393.35002
  10. [10] J. Martinet, Singularities of Smooth Functions and Maps, London Math. Soc. Lecture Note Ser. 58, Cambridge Univ. Press, Cambridge, 1982. 
  11. [11] S. Marvizi, R. Melrose, Spectral invariants of convex planar regions, J. Differential Geom. 17 (1982), 475-502. Zbl0492.53033
  12. [12] M. Mikosz, On classification of the linear Lagrangian and isotropic subspaces, Demonstratio Math. 30 (1997), 437-450. Zbl0890.58015
  13. [13] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton Univ. Press, Princeton, 1963. 
  14. [14] A. S. Mishchenko, V. E. Shatalov, B. Yu. Sternin, Lagrangian manifolds and the method of the canonical operator (in Russian), % Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Moskow, Nauka, Moscow, 1978. 
  15. [15] R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), 335-371. Zbl0794.58017
  16. [16] F. Takens, J. White, Morse theory of double normals of immersions, Indiana Univ. Math. J. 21 (1971), 11-17. Zbl0228.58007
  17. [17] W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A 27 (1977), 101-114. Zbl0365.58011
  18. [18] A. Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 1-13. Zbl0465.58013
  19. [19] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977; corrected reprint, 1979. 
  20. [20] V. M. Zakalyukin, R. M. Roberts, Stability of Lagrangian manifolds with singularities (in Russian), Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 28-34; English transl.: Funct. Anal. Appl. 26 (1992), 174-178. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.