Bifurcations of affine invariants for one-parameter family of generic convex plane curves
Banach Center Publications (1999)
- Volume: 50, Issue: 1, page 227-236
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. I. Arnol'd, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582. Zbl0343.58003
- [2] W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923. Zbl49.0499.01
- [4] J. W. Bruce, Isotopies of generic plane curves, Glasgow Math. J. 24 (1983), 195-206. Zbl0513.58007
- [3] J. W. Bruce and P. J. Giblin, Curves and Singularities. A Geometrical Introduction to Singularity Theory, Cambridge Univ. Press, Cambridge, 1984. Zbl0534.58008
- [6] D. L. Fidal, The existence of sextactic points, Math. Proc. Cambridge Philos. Soc. 96 (1984), 433-436. Zbl0568.58007
- [5] D. L. Fidal and P. J. Giblin, Generic 1-parameter families of caustics by reflexion in the plane, Math. Proc. Cambridge Philos. Soc. 96 (1984), 425-432. Zbl0561.58004
- [7] C. G. Gibson, Singular Points of Smooth Mappings, Pitman Research Notes in Mathematics 25, Pitman Publ., London, 1979. Zbl0426.58001
- [8] S. Izumiya and T. Sano, Generic affine differential geometry of plane curves, Proc. Edinburgh Math. Soc. (2) 41 (1998), 315-324. Zbl0965.53013
- [9] K. Nomizu and T. Sasaki, Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Tracts in Math. 111, Cambridge Univ. Press, Cambridge, 1994. Zbl0834.53002