Veronese webs for bihamiltonian structures of higher corank

Andriy Panasyuk

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 251-261
  • ISSN: 0137-6934

How to cite

top

Panasyuk, Andriy. "Veronese webs for bihamiltonian structures of higher corank." Banach Center Publications 51.1 (2000): 251-261. <http://eudml.org/doc/209037>.

@article{Panasyuk2000,
author = {Panasyuk, Andriy},
journal = {Banach Center Publications},
keywords = {Poisson pair; bi-Hamiltonian structure; Veronese web},
language = {eng},
number = {1},
pages = {251-261},
title = {Veronese webs for bihamiltonian structures of higher corank},
url = {http://eudml.org/doc/209037},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Panasyuk, Andriy
TI - Veronese webs for bihamiltonian structures of higher corank
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 251
EP - 261
LA - eng
KW - Poisson pair; bi-Hamiltonian structure; Veronese web
UR - http://eudml.org/doc/209037
ER -

References

top
  1. [1] J. F. Adams, Lectures on Lie groups, W. A. Benjamin, Inc., 1969. Zbl0206.31604
  2. [2] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, 1978. Zbl0386.70001
  3. [3] A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), No 1; English transl. in: Math. USSR-Izv. 38 (1992), 69-90. Zbl0744.58030
  4. [4] N. Bourbaki, Groupes et algèbres de Lie, VII,VIII, Hermann, 1975. 
  5. [5] N. Bourbaki, Groupes et algèbres de Lie, IX, Masson, 1982. 
  6. [6] S. S. Chern and P. A. Griffiths, An inequality for the rank of a web and webs of maximum rank, Ann. Scuola Norm. Sup. Pisa 5 (1978), 539-557. Zbl0402.57001
  7. [7] S. S. Chern and P. A. Griffiths, Abel's theorem and webs, Jahresber. Deutsch. Math.-Verein. 80 (1978), 13-110. Zbl0386.14002
  8. [8] A. T. Fomenko and A. S. Mishchenko, Euler equations in finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 396-416; English transl. in: Math USSR-Izv. 12 (1978). Zbl0383.58006
  9. [9] A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Kluwer Academic Publishers, 1988. Zbl0675.58018
  10. [10] I. M. Gelfand and I. S. Zakharevich, Spectral theory for a pair of skew-symmetrical operators on S 1 , Functional Anal. Appl. 23 (1989), 85-93. 
  11. [11] I. M. Gelfand and I. S. Zakharevich, Webs, Veronese curves, and bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178. Zbl0739.58021
  12. [12] I. M. Gelfand and I. S. Zakharevich, On the local geometry of a bihamiltonian structure, in: The Gelfand mathematical seminars, 1990-1992, Birkhäuser, Boston, 1993, 51-112. Zbl0809.57013
  13. [13] I. M. Gelfand and I. S. Zakharevich, Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures, math.DG/9903080. 
  14. [14] I. S. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, math.SG/9908034. Zbl0994.37034
  15. [15] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer-Verlag, 1990. Zbl0722.22004
  16. [16] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616-618. Zbl0099.36802

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.