C*-algebra of a differential groupoid

Piotr Stachura

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 263-281
  • ISSN: 0137-6934

How to cite

top

Stachura, Piotr. "C*-algebra of a differential groupoid." Banach Center Publications 51.1 (2000): 263-281. <http://eudml.org/doc/209039>.

@article{Stachura2000,
author = {Stachura, Piotr},
journal = {Banach Center Publications},
keywords = {category of differential groupoids; category of -algebras},
language = {eng},
number = {1},
pages = {263-281},
title = {C*-algebra of a differential groupoid},
url = {http://eudml.org/doc/209039},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Stachura, Piotr
TI - C*-algebra of a differential groupoid
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 263
EP - 281
LA - eng
KW - category of differential groupoids; category of -algebras
UR - http://eudml.org/doc/209039
ER -

References

top
  1. [1] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer, Berlin, 1981. Zbl0463.46052
  2. [2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. 
  3. [3] J.-H. Lu and A. Weinstein, Poisson Lie Groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526. Zbl0673.58018
  4. [4] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Series 124, Cambridge Univ. Press, 1987. 
  5. [5] T. Masuda, Y. Nakagami and S. L. Woronowicz, A C*-algebraic framework for the quantum groups, to appear. Zbl1053.46050
  6. [6] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (1980). Zbl0433.46049
  7. [7] A. Weinstein, Geometric Models for Noncommutative Algebras, Lecture Notes in Math. 227, preliminary version. Zbl1135.58300
  8. [8] S. L. Woronowicz, Unbounded Elements Affiliated with C*-Algebras and Non-Compact Quantum Groups, Comm. Math. Phys. 136 (1991), 399-432. Zbl0743.46080
  9. [9] S. L. Woronowicz, From Multiplicative Unitaries to Quantum Groups, Int. Journal of Math. 7, No.1 (1996), 127-149. Zbl0876.46044
  10. [10] S. L. Woronowicz, Pseudospaces, pseudogroups and Pontriyagin duality, Proc. of the International Conference on Math. Phys., Lausanne 1979, Lecture Notes in Math. 116. 
  11. [11] S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys. 134 (1990), 347-370. Zbl0708.58030
  12. [12] S. Zakrzewski, Quantum and classical pseudogroups II, Comm. Math. Phys. 134 (1990), 371-395. Zbl0708.58031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.