Linearization and star products

Veronique Chloup

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 55-60
  • ISSN: 0137-6934

Abstract

top
The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.

How to cite

top

Chloup, Veronique. "Linearization and star products." Banach Center Publications 51.1 (2000): 55-60. <http://eudml.org/doc/209043>.

@article{Chloup2000,
abstract = {The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.},
author = {Chloup, Veronique},
journal = {Banach Center Publications},
keywords = {Poisson structures; Poisson-Lie groups; star products},
language = {eng},
number = {1},
pages = {55-60},
title = {Linearization and star products},
url = {http://eudml.org/doc/209043},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Chloup, Veronique
TI - Linearization and star products
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 55
EP - 60
AB - The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.
LA - eng
KW - Poisson structures; Poisson-Lie groups; star products
UR - http://eudml.org/doc/209043
ER -

References

top
  1. [1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, Lett. Math. Phys. 1 (1977), 521-530. Zbl0377.53025
  2. [2] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products. Geometry and physics, Class. Quantum Grav. 14 (1997), A93-A107. Zbl0881.58021
  3. [3] V. Chloup-Arnould, Groupes de Lie-Poisson, Thèse de l'université de Metz (1996). 
  4. [4] V. Chloup-Arnould, Linearization of some Poisson-Lie tensor, J. of Geometry and Physics 24 (1997), 46-52. 
  5. [5] V. Chloup-Arnould, Star products on the algebra of polynomials on the dual of a semi-simple Lie algebra, Acad. Roy. Belg. Bull. Cl. Sci. (6) 8 (1997), no. 7-12, 263-269. 
  6. [6] M. Cahen, S. Gutt and J. Rawnsley, Non linearizability of the Iwasawa Poisson-Lie structure, Lett. Math. Phys. 24 (1992), 79-83. Zbl0756.58015
  7. [7] J. F. Conn, Normal forms for analytic Poisson structures, Ann. of Math. 119 (1984), 577-601. Zbl0553.58004
  8. [8] J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. 121 (1985), 565-593. Zbl0592.58025
  9. [9] V. G. Drinfeld, Hamiltonian structure on Lie groups and the geometric meaning of the classical Yang-Baxter equation, Sov. Math. Dokl. 27 (1) (1983), 68-71. 
  10. [10] J. P. Dufour, Linéarisation de certaines structures de Poisson, J. Differential Geometry 32 (5) (1990), 415-428. Zbl0728.58011
  11. [11] S. Gutt, On the second Hochschild cohomology spaces for algebras of functions on a manifold, L.M.P. 39 (1997), 157-162. Zbl0874.16008
  12. [12] M. Kontsevich, Deformation quantization of Poisson manifold, I, q-alg 9709040. 
  13. [13] Molinier, Linéarisation de structures de Poisson, thèse de l'université de Montpellier II (1993). 
  14. [14] H. Omori, Y. Maeda and A. Yoshioka, Deformation quantizations of Poisson algebras, Contemp. Math. AMS 179 (1994), 213-240. Zbl0820.58027
  15. [15] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557. Zbl0524.58011
  16. [16] A. Weinstein, Poisson geometry of the principal series and non linearizable structures, J. Differential Geometry 25 (1987), 55-73. Zbl0592.58024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.