Geometric quantization and no-go theorems

Viktor Ginzburg; Richard Montgomery

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 69-77
  • ISSN: 0137-6934

Abstract

top
A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist. This is a consequence of a "no-go" theorem claiming that the entire Lie algebra of smooth functions on a compact symplectic manifold cannot be quantized, i.e., it has no essentially nontrivial finite-dimensional representations.

How to cite

top

Ginzburg, Viktor, and Montgomery, Richard. "Geometric quantization and no-go theorems." Banach Center Publications 51.1 (2000): 69-77. <http://eudml.org/doc/209045>.

@article{Ginzburg2000,
abstract = {A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist. This is a consequence of a "no-go" theorem claiming that the entire Lie algebra of smooth functions on a compact symplectic manifold cannot be quantized, i.e., it has no essentially nontrivial finite-dimensional representations.},
author = {Ginzburg, Viktor, Montgomery, Richard},
journal = {Banach Center Publications},
keywords = {geometric quantization; no-go theorems; connections on vector bundles},
language = {eng},
number = {1},
pages = {69-77},
title = {Geometric quantization and no-go theorems},
url = {http://eudml.org/doc/209045},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Ginzburg, Viktor
AU - Montgomery, Richard
TI - Geometric quantization and no-go theorems
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 69
EP - 77
AB - A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist. This is a consequence of a "no-go" theorem claiming that the entire Lie algebra of smooth functions on a compact symplectic manifold cannot be quantized, i.e., it has no essentially nontrivial finite-dimensional representations.
LA - eng
KW - geometric quantization; no-go theorems; connections on vector bundles
UR - http://eudml.org/doc/209045
ER -

References

top
  1. [Ati] M. F. Atiyah, phGeometry and physics of knots, Cambridge University Press, Cambridge, 1990. 
  2. [Atk] C. J. Atkin, phA note on the algebra of Poisson brackets, Math. Proc. Cambridge Philos. Soc. 96 (1984), 45-60. 
  3. [Av1] A. Avez, phReprésentation de l'algèbre de Lie des symplectomorphismes par des opérateurs bornés, C. R. Acad. Sci. Paris Sér. A 279 (1974), 785-787. Zbl0297.53019
  4. [Av2] A. Avez, phRemarques sur les automorphismes infinitésimaux des variétés symplectiques compactes, Rend. Sem. Mat. Univ. Politec. Torino 33 (1974-75), 5-12. 
  5. [ADL] A. Avez, A. Diaz-Miranda and A. Lichnerowicz, phSur l'algèbre des automorphismes infinitésimaux d'une variété symplectique, J. Differential Geom. 9 (1974), 1-40. 
  6. [ADPW] S. Axelrod, S. Della Pietra and E. Witten, phGeometric quantization of Chern-Simons gauge theories, J. Differential Geom. 33 (1991), 787-902. Zbl0697.53061
  7. [Ba] A. Banyaga, phSur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227. Zbl0393.58007
  8. [BU] D. Borthwick and A. Uribe, phAlmost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), 845-861. Zbl0872.58030
  9. [Du] J. J. Duistermaat, phThe heat kernel Lefschetz fixed point formula for the S p i n Dirac operator, Birkhäuser, Boston, 1996. 
  10. [Fr] D. S. Freed, phReview of ’The heat kernel Lefschetz fixed point formula for the S p i n Dirac operator’ by J. J. Duistermaat, Bull. Amer. Math. Soc. 34 (1997), 73-78. 
  11. [GGG] M. J. Gotay, J. Grabowski and H. B. Grundling, phAn obstruction to quantizing compact symplectic manifolds, Proc. Amer. Math. Soc. 128 (2000), 237-243. Zbl1097.53502
  12. [GGH] M. J. Gotay, H. B. Grundling and A. Hurst, phA Groenewold-Van Hove theorem for S 2 , Trans. Amer. Math. Soc. 348 (1996), 1579-1597. 
  13. [GGT] M. J. Gotay, H. B. Grundling and G. M. Tuyman, phObstruction results in quantization theory, J. Nonlinear Sci. 6 (1996), 469-498. Zbl0863.58030
  14. [Gr] J. Grabowski, phIsomorphisms and ideals of the Lie algebras of vector fields, Invent. Math. 50 (1978), 13-33. 
  15. [Gu] V. Guillemin, phStar products on compact pre-quantizable symplectic manifolds, Lett. Math. Phys. 35 (1995), 85-89. Zbl0842.58041
  16. [GU] V. Guillemin and A. Uribe, phThe Laplace operator on the nth tensor power of a line bundle: eigenvalues which are uniformly bounded in n, Asymptotic Anal. 1 (1988), 105-113. Zbl0649.53026
  17. [Hi] N. J. Hitchin, phFlat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347-380. 
  18. [LV] G. Lion and M. Vergne, phThe Weil representation, Maslov index and theta series, Birkhäuser, Boston, 1980. Zbl0444.22005
  19. [Om] H. Omori, phInfinite dimensional Lie transformation groups, Lect. Notes in Math., no. 427, Springer-Verlag, New York, 1974. 
  20. [SP] M. E. Shanks and L. E. Pursel, phThe Lie algebra of smooth manifolds, Proc. Amer. Math. Soc. 5 (1954), 468-472. 
  21. [We] A. Weinstein, phDeformation quantization, Séminaire Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 789, 5, 389-409. 
  22. [Wo] N. M. J. Woodhouse, phGeometric quantization, Oxford University Press, New York, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.