Behaviour of solutions to u t - Δ u + | u | p = 0 as p → +∞

Philippe Laurençot

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 153-161
  • ISSN: 0137-6934

How to cite

top

Laurençot, Philippe. "Behaviour of solutions to $u_{t} - Δu + |∇u|^{p} = 0$ as p → +∞." Banach Center Publications 52.1 (2000): 153-161. <http://eudml.org/doc/209053>.

@article{Laurençot2000,
author = {Laurençot, Philippe},
journal = {Banach Center Publications},
keywords = {comparison and compactness arguments},
language = {eng},
number = {1},
pages = {153-161},
title = {Behaviour of solutions to $u_\{t\} - Δu + |∇u|^\{p\} = 0$ as p → +∞},
url = {http://eudml.org/doc/209053},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Laurençot, Philippe
TI - Behaviour of solutions to $u_{t} - Δu + |∇u|^{p} = 0$ as p → +∞
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 153
EP - 161
LA - eng
KW - comparison and compactness arguments
UR - http://eudml.org/doc/209053
ER -

References

top
  1. [1] L. Amour and M. Ben-Artzi, Global existence and decay for viscous Hamilton-Jacobi equations, Nonlinear Anal. 31 (1998), 621-628. Zbl1023.35049
  2. [2] S. Benachour and Ph. Laurençot, Global solutions to viscous Hamilton-Jacobi equations with irregular initial data, Comm. Partial Differential Equations 24 (1999), 1999-2021. Zbl0935.35033
  3. [3] Ph. Bénilan and M. G. Crandall, Completely accretive operators, in: Semigroup Theory and Evolution Equations, Ph. Clément et al. (eds.), Lecture Notes in Pure and Appl. Math. 135, Dekker, New York, 1991, 41-75. Zbl0895.47036
  4. [4] Ph. Bénilan and P. Wittbold, Absorptions non linéaires, J. Funct. Anal. 114 (1993), 59-96. Zbl0786.47043
  5. [5] K. M. Hui, Asymptotic behaviour of solutions of u t = Δ u m - u p as p → ∞, Nonlinear Anal. 21 (1993), 191-195. 
  6. [6] O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Math. Appl. 13, SMAI, Springer-Verlag, Paris, 1993. 
  7. [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.