Behaviour of solutions to as p → +∞
Banach Center Publications (2000)
- Volume: 52, Issue: 1, page 153-161
- ISSN: 0137-6934
Access Full Article
topHow to cite
topLaurençot, Philippe. "Behaviour of solutions to $u_{t} - Δu + |∇u|^{p} = 0$ as p → +∞." Banach Center Publications 52.1 (2000): 153-161. <http://eudml.org/doc/209053>.
@article{Laurençot2000,
author = {Laurençot, Philippe},
journal = {Banach Center Publications},
keywords = {comparison and compactness arguments},
language = {eng},
number = {1},
pages = {153-161},
title = {Behaviour of solutions to $u_\{t\} - Δu + |∇u|^\{p\} = 0$ as p → +∞},
url = {http://eudml.org/doc/209053},
volume = {52},
year = {2000},
}
TY - JOUR
AU - Laurençot, Philippe
TI - Behaviour of solutions to $u_{t} - Δu + |∇u|^{p} = 0$ as p → +∞
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 153
EP - 161
LA - eng
KW - comparison and compactness arguments
UR - http://eudml.org/doc/209053
ER -
References
top- [1] L. Amour and M. Ben-Artzi, Global existence and decay for viscous Hamilton-Jacobi equations, Nonlinear Anal. 31 (1998), 621-628. Zbl1023.35049
- [2] S. Benachour and Ph. Laurençot, Global solutions to viscous Hamilton-Jacobi equations with irregular initial data, Comm. Partial Differential Equations 24 (1999), 1999-2021. Zbl0935.35033
- [3] Ph. Bénilan and M. G. Crandall, Completely accretive operators, in: Semigroup Theory and Evolution Equations, Ph. Clément et al. (eds.), Lecture Notes in Pure and Appl. Math. 135, Dekker, New York, 1991, 41-75. Zbl0895.47036
- [4] Ph. Bénilan and P. Wittbold, Absorptions non linéaires, J. Funct. Anal. 114 (1993), 59-96. Zbl0786.47043
- [5] K. M. Hui, Asymptotic behaviour of solutions of as p → ∞, Nonlinear Anal. 21 (1993), 191-195.
- [6] O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Math. Appl. 13, SMAI, Springer-Verlag, Paris, 1993.
- [7] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, 1968.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.