On the coupled system of nonlinear wave equations with different propagation speeds
Tohru Ozawa; Kimitoshi Tsutaya; Yoshio Tsutsumi
Banach Center Publications (2000)
- Volume: 52, Issue: 1, page 181-188
- ISSN: 0137-6934
Access Full Article
topHow to cite
topOzawa, Tohru, Tsutaya, Kimitoshi, and Tsutsumi, Yoshio. "On the coupled system of nonlinear wave equations with different propagation speeds." Banach Center Publications 52.1 (2000): 181-188. <http://eudml.org/doc/209056>.
@article{Ozawa2000,
author = {Ozawa, Tohru, Tsutaya, Kimitoshi, Tsutsumi, Yoshio},
journal = {Banach Center Publications},
keywords = {time local well-posedness; three space dimensions; Klein-Gordon-Zakharov system; breakdown of the Strichartz estimate},
language = {eng},
number = {1},
pages = {181-188},
title = {On the coupled system of nonlinear wave equations with different propagation speeds},
url = {http://eudml.org/doc/209056},
volume = {52},
year = {2000},
}
TY - JOUR
AU - Ozawa, Tohru
AU - Tsutaya, Kimitoshi
AU - Tsutsumi, Yoshio
TI - On the coupled system of nonlinear wave equations with different propagation speeds
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 181
EP - 188
LA - eng
KW - time local well-posedness; three space dimensions; Klein-Gordon-Zakharov system; breakdown of the Strichartz estimate
UR - http://eudml.org/doc/209056
ER -
References
top- [1] D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well posedness of the coupled Schrödinger Korteweg-de Vries equations in the capillary-gravity interaction waves, Proc. Amer. Math. Soc. 125 (1997) 2907-2919. Zbl0884.35138
- [2] D. Bekiranov, T. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal. 158 (1998) 357-388. Zbl0909.35123
- [3] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York-Heidelberg, 1976. Zbl0344.46071
- [4] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107-156. Zbl0787.35097
- [5] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. II The KdV equation, Geom. Funct. Anal. 3 (1993) 209-262. Zbl0787.35098
- [6] J. Bourgain and J. Colliander, On well-posedness of the Zakharov system, Int. Math. Res. Not. 11 (1996) 515-546. Zbl0909.35125
- [7] R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990.
- [8] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki no. 796, Astérisque 237 (1996) 163-187.
- [9] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. Zbl0849.35064
- [10] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997) 384-436. Zbl0894.35108
- [11] C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1-21. Zbl0787.35090
- [12] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573-603. Zbl0848.35114
- [13] C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc. 348 (1996) 3323-3353. Zbl0862.35111
- [14] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. Zbl0803.35095
- [15] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995) 96-103. Zbl0909.35094
- [16] S. Klainerman and M. Machedon, Estimates for null forms and the space , Int. Math. Res. Not. 17 (1996) 853-365. Zbl0909.35095
- [17] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave map in 3D, Comm. Part. Diff. Eqs. 22 (1997) 901-918. Zbl0884.35102
- [18] H. Lindblad, A sharp counterexample to the local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) 503-539. Zbl0797.35123
- [19] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996) 1-16. Zbl0855.35080
- [20] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995) 357-426. Zbl0846.35085
- [21] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Annalen 313 (1999) 127-140. Zbl0935.35094
- [22] H. Pecher, Nonlinear samll data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984) 261-270. Zbl0538.35063
- [23] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Part. Diff. Eqs. 18 (1993) 169-177. Zbl0803.35096
- [24] R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-714. Zbl0372.35001
- [25] K. Tsugawa, Well-posedness in the energy space for the Cauchy problem of the coupled system of complex scalar field and Maxwell equations, to appear in Fukcialaj Ekvacioj. Zbl1142.35612
- [26] K. Tsutaya, Local regularity of non-resonant nonlinear wave equations, Diff. Integr. Eqns. 11 (1998) 279-292. Zbl1004.35093
- [27] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908-914.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.