On the coupled system of nonlinear wave equations with different propagation speeds

Tohru Ozawa; Kimitoshi Tsutaya; Yoshio Tsutsumi

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 181-188
  • ISSN: 0137-6934

How to cite

top

Ozawa, Tohru, Tsutaya, Kimitoshi, and Tsutsumi, Yoshio. "On the coupled system of nonlinear wave equations with different propagation speeds." Banach Center Publications 52.1 (2000): 181-188. <http://eudml.org/doc/209056>.

@article{Ozawa2000,
author = {Ozawa, Tohru, Tsutaya, Kimitoshi, Tsutsumi, Yoshio},
journal = {Banach Center Publications},
keywords = {time local well-posedness; three space dimensions; Klein-Gordon-Zakharov system; breakdown of the Strichartz estimate},
language = {eng},
number = {1},
pages = {181-188},
title = {On the coupled system of nonlinear wave equations with different propagation speeds},
url = {http://eudml.org/doc/209056},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Ozawa, Tohru
AU - Tsutaya, Kimitoshi
AU - Tsutsumi, Yoshio
TI - On the coupled system of nonlinear wave equations with different propagation speeds
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 181
EP - 188
LA - eng
KW - time local well-posedness; three space dimensions; Klein-Gordon-Zakharov system; breakdown of the Strichartz estimate
UR - http://eudml.org/doc/209056
ER -

References

top
  1. [1] D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well posedness of the coupled Schrödinger Korteweg-de Vries equations in the capillary-gravity interaction waves, Proc. Amer. Math. Soc. 125 (1997) 2907-2919. Zbl0884.35138
  2. [2] D. Bekiranov, T. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal. 158 (1998) 357-388. Zbl0909.35123
  3. [3] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York-Heidelberg, 1976. Zbl0344.46071
  4. [4] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107-156. Zbl0787.35097
  5. [5] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. II The KdV equation, Geom. Funct. Anal. 3 (1993) 209-262. Zbl0787.35098
  6. [6] J. Bourgain and J. Colliander, On well-posedness of the Zakharov system, Int. Math. Res. Not. 11 (1996) 515-546. Zbl0909.35125
  7. [7] R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990. 
  8. [8] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki no. 796, Astérisque 237 (1996) 163-187. 
  9. [9] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. Zbl0849.35064
  10. [10] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997) 384-436. Zbl0894.35108
  11. [11] C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1-21. Zbl0787.35090
  12. [12] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573-603. Zbl0848.35114
  13. [13] C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc. 348 (1996) 3323-3353. Zbl0862.35111
  14. [14] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. Zbl0803.35095
  15. [15] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995) 96-103. Zbl0909.35094
  16. [16] S. Klainerman and M. Machedon, Estimates for null forms and the space H s , δ , Int. Math. Res. Not. 17 (1996) 853-365. Zbl0909.35095
  17. [17] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave map in 3D, Comm. Part. Diff. Eqs. 22 (1997) 901-918. Zbl0884.35102
  18. [18] H. Lindblad, A sharp counterexample to the local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) 503-539. Zbl0797.35123
  19. [19] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996) 1-16. Zbl0855.35080
  20. [20] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995) 357-426. Zbl0846.35085
  21. [21] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Annalen 313 (1999) 127-140. Zbl0935.35094
  22. [22] H. Pecher, Nonlinear samll data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984) 261-270. Zbl0538.35063
  23. [23] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Part. Diff. Eqs. 18 (1993) 169-177. Zbl0803.35096
  24. [24] R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-714. Zbl0372.35001
  25. [25] K. Tsugawa, Well-posedness in the energy space for the Cauchy problem of the coupled system of complex scalar field and Maxwell equations, to appear in Fukcialaj Ekvacioj. Zbl1142.35612
  26. [26] K. Tsutaya, Local regularity of non-resonant nonlinear wave equations, Diff. Integr. Eqns. 11 (1998) 279-292. Zbl1004.35093
  27. [27] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908-914. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.