Klein-Gordon type decay rates for wave equations with time-dependent coefficients
Michael Reissig; Karen Yagdjian
Banach Center Publications (2000)
- Volume: 52, Issue: 1, page 189-212
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReissig, Michael, and Yagdjian, Karen. "Klein-Gordon type decay rates for wave equations with time-dependent coefficients." Banach Center Publications 52.1 (2000): 189-212. <http://eudml.org/doc/209057>.
@article{Reissig2000,
abstract = {This work is concerned with the proof of $L_p - L_q$ decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation $u_\{tt\} - λ^2(t)b^2(t) (Δu - m^\{2\}u) = 0$. The coefficient consists of an increasing smooth function $λ$ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, $m^2$ is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).},
author = {Reissig, Michael, Yagdjian, Karen},
journal = {Banach Center Publications},
keywords = {- decay estimates},
language = {eng},
number = {1},
pages = {189-212},
title = {Klein-Gordon type decay rates for wave equations with time-dependent coefficients},
url = {http://eudml.org/doc/209057},
volume = {52},
year = {2000},
}
TY - JOUR
AU - Reissig, Michael
AU - Yagdjian, Karen
TI - Klein-Gordon type decay rates for wave equations with time-dependent coefficients
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 189
EP - 212
AB - This work is concerned with the proof of $L_p - L_q$ decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation $u_{tt} - λ^2(t)b^2(t) (Δu - m^{2}u) = 0$. The coefficient consists of an increasing smooth function $λ$ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, $m^2$ is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
LA - eng
KW - - decay estimates
UR - http://eudml.org/doc/209057
ER -
References
top- [1] P. Brenner, On estimates for the wave-equation, Math. Zeitschrift 145 (1975), 251-254. Zbl0321.35052
- [2] P. Brenner, On the existence of global smooth solutions of certain semi-linear hyperbolic equations, Math. Zeitschrift 167 (1979), 99-135. Zbl0388.35048
- [3] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. An Introduction, London Mathematical Society Lecture Note Series, Vol.196, University Press, Cambridge, 1994. Zbl0804.35001
- [4] F. Hirosawa, Energy decay for degenerate hyperbolic equations of Klein-Gorden type with dissipative term, manuscript.
- [5] L. Hörmander, Remarks on the Klein-Gorden equation, Journées Equations aux Dérivées Partielles, Saint Jean de Monts, 1987.
- [6] L. Hörmander, Translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. Zbl0093.11402
- [7] S. Klainerman, Global existence for nonlinear wave equations, Comm. on Pure and Appl. Math. 33 (1980), 43-101. Zbl0405.35056
- [8] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems, John Wiley & Sons, 1994.
- [9] W. Littman, Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. Zbl0143.34701
- [10] H. Pecher, -Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Zeitschrift 150 (1976), 159-183.
- [11] R. Racke, Lectures on Nonlinear Evolution Equations, Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1992. Zbl0811.35002
- [12] M. Reissig and K. Yagdjian, An example for the influence of oscillations on decay estimates, to appear. Zbl0947.35025
- [13] M. Reissig and K. Yagdjian, One application of Floquet’s theory to estimates, Math. Meth. Appl. Sci. 22 (1999), 937-951. Zbl0949.35024
- [14] M. Reissig and K. Yagdjian, estimates for the solutions of strictly hyperbolic equations of second order with time dependent coefficients, accepted for publication in Mathematische Nachrichten.
- [15] M. Reissig and K. Yagdjian, estimates for the solutions of hyperbolic equations of second order with time dependent coefficients - Oscillations via growth -, Preprint 98-5, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg.
- [16] R. Strichartz, A priori estimates for the wave-equation and some applications, J. Funct. Anal. 5 (1970), 218-235. Zbl0189.40701
- [17] W. v. Wahl, -decay rates for homogeneous wave-equations, Math. Zeitschrift 120 (1971), 93-106. Zbl0212.44201
- [18] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics. Micro-local approach, Math. Topics, Vol. 12, Akademie Verlag, Berlin, 1997. Zbl0887.35002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.