Data assimilation for the time-dependent transport problem
Banach Center Publications (2000)
- Volume: 52, Issue: 1, page 213-220
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. I. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. Zbl0914.35001
- [2] V. I. Agoshkov, Necessary and sufficient conditions for solvability of some first-order hyperbolic problems, preprint No.248, Dept. Numer. Math., USSR Academy of Science, 1990 (in Russian).
- [3] V. I. Agoshkov, On existence of traces of functions in spaces used in transport theory, Soviet Doklady 288 (1986), 265-269. Zbl0636.46038
- [4] V. I. Agoshkov and G. I. Marchuk, On the solvability and numerical solution of data assimilation problems, Russ. J. Numer. Anal. Math. Modelling 8 (1993), 1-16. Zbl0818.65056
- [5] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Scient. Ec. Norm. Sup. 4 (1970), 185-233. Zbl0202.36903
- [6] M. Cessenat, Théorèmes de trace pour les espaces de fonctions de la neutronique, C. R. Acad. Sci. Paris 299 (1984), 831-834. Zbl0568.46030
- [7] T. A. Germogenova, Local properties of solutions of the transport equation, Sov. Doklady 187 (1969), 18-21. Zbl0208.13004
- [8] T. A. Germogenova, Local Properties of Solutions of Transport Equations, Nauka, Moscow, 1986.
- [9] W. Greenberg, C. Van der Mee, and V. Protopopescu, Boundary Value Problems in Abstract Kinetic Theory, Birkhäuser, Basel, 1987. Zbl0624.35003
- [10] J. L. Lions, Sur le Contrôle Optimal de Systèmes Gouvernés par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.
- [11] G. I. Marchuk and V.I. Lebedev, Numerical Methods in the Theory of Neutron Transport, Harwood Academic Publisher, New York, 1986. Zbl0234.65102
- [12] S. Mischler, Equation de Vlasov avec régularité Sobolev du champ: théorèmes de trace et applications, preprint No.13, Université de Versailles, 1997.
- [13] V. P. Shutyaev, Necessary and sufficient conditions of solvability of the initial-boundary value transport problem, in: Mathematical Models of Non-Linear Excitation, Transport, Dynamics, Control in Condensed Systems and other Media, Proc. of the Third International Conf. Tver 1998, V. Mironov (ed.), TGTU, Tver, 1998, 180.
- [14] V. P. Shutyaev, On a class of insensitive control problems, Control and Cybernetics 23 (1994), 257-266. Zbl0809.93022
- [15] V. P. Shutyaev, Some properties of the control operator in the problem of data assimilation and iterative algorithms, Russ. J. Numer. Anal. Math. Modelling 10 (1995), 357-371. Zbl0840.65040
- [16] V. P. Shutyaev, Some regularity properties of the solution of the time-dependent transport-problem in a slab, preprint No.81, Dept. Numer. Math., USSR Academy of Science, 1985 (in Russian).
- [17] S. Ukai, Solutions of the Boltzmann equations, in: Patterns and Waves-Qualitative Analysis of Nonlinear Differential Equations, Stud. Math. Appl. 18, North-Holland, Amsterdam (1986), 37-96.
- [18] V. S. Vladimirov, Mathematical problems of one-velocity transport theory, Proc. of the Steklov Inst. Math. 61, 1961.