Non-Leibniz algebras with logarithms do not have the trigonometric identity
Banach Center Publications (2000)
- Volume: 53, Issue: 1, page 177-189
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- DB[1] A. di Bucchianico, Banach algebras, logarithms and polynomials of convolution type, J. Math. Anal. Appl. 156 (1991), 253-273. Zbl0765.46027
- PR[1] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
- PR[2] D. Przeworska-Rolewicz, Consequences of the Leibniz condition, in: Different Aspects of Differentiability. Proc. Conf. Warsaw, September 1993. Ed. D. Przeworska-Rolewicz. Dissertationes Math. 340 (1995), 289-300.
- PR[3] D. Przeworska-Rolewicz, Logarithms and Antilogarithms. An Algebraic Analysis Approach, With Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht, 1998.
- PR[4] D. Przeworska-Rolewicz, Linear combinations of right invertible operators in commutative algebras with logarithms, Demonstratio Math. 31 (1998), 887-898.
- PR[5] D. Przeworska-Rolewicz, Postmodern logarithmo-technia, International Journal of Computers and Mathematics with Applications (to appear). Zbl0987.05014
- PR[6] D. Przeworska-Rolewicz, Some open questions in Algebraic Analysis, in: Unsolved Problems on Mathematics for the 21th Century - A Tribute to Kiyoshi Iséki's 80th Birthday, IOS Press, Amsterdam (to appear).