# The Weyl correspondence as a functional calculus

Banach Center Publications (2000)

- Volume: 53, Issue: 1, page 79-88
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topAlvarez, Josefina. "The Weyl correspondence as a functional calculus." Banach Center Publications 53.1 (2000): 79-88. <http://eudml.org/doc/209079>.

@article{Alvarez2000,

abstract = {The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.},

author = {Alvarez, Josefina},

journal = {Banach Center Publications},

keywords = {Weyl correspondence; functions of pseudo-differential operators; self-adjoint Banach algebra},

language = {eng},

number = {1},

pages = {79-88},

title = {The Weyl correspondence as a functional calculus},

url = {http://eudml.org/doc/209079},

volume = {53},

year = {2000},

}

TY - JOUR

AU - Alvarez, Josefina

TI - The Weyl correspondence as a functional calculus

JO - Banach Center Publications

PY - 2000

VL - 53

IS - 1

SP - 79

EP - 88

AB - The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.

LA - eng

KW - Weyl correspondence; functions of pseudo-differential operators; self-adjoint Banach algebra

UR - http://eudml.org/doc/209079

ER -

## References

top- [1] J. Alvarez, Existence of a functional calculus on certain algebras of pseudo-differential operators, J. Unión Mat. Argentina 29 (1979), 55-76. Zbl0439.47042
- [2] J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, I, in: Proceedings of the Seminar on Fourier Analysis held at El Escorial, June 17-23, 1979,edited by Miguel de Guzmán and Ireneo Peral, Asociación Matemática Española 1, 1979, 1-61.
- [3] J. Alvarez, An algebra of ${L}^{p}$-bounded pseudo-differential operators, J. Math. Anal. Appl. 84 (1983) 268-282. Zbl0519.35084
- [4] J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, II, in: Studies in Applied Mathematics, edited by Victor Guillemin, Academic Press, New York, 1983, 27-72.
- [5] J. Alvarez, Functional calculi for pseudo-differential operators, III, Studia Mathematica 95 (1989), 53-71.
- [6] J. Alvarez and J. Hounie, Functions of pseudo-differential operators of non-positive order, J. Funct. Anal. 141 (1996), 45-59. Zbl0863.35119
- [7] R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267. Zbl0191.13403
- [8] A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921. Zbl0081.33502
- [9] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York and London, 1972. Zbl0247.47001
- [10] G. B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, New Jersey, 1989. Zbl0682.43001
- [11] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure and Appl. Math. 32 (1965), 269-305.
- [12] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. Pure Math. 10, Amer. Math. Soc., 1966, 138-183.
- [13] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure and Appl. Math. 18 (1979), 359-443.
- [14] M. L. Lapidus, Quantification, calcul opérationnel de Feynman axiomatique et intégrale fonctionnelle généralisée, C. R. Acad. Sci. Paris Sér. I 308 (1989), 133-138. Zbl0664.47034
- [15] A. Mc Intosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 420-439. Zbl0694.47015
- [16] V. Nazaikinskii, V. Shatalov and B. Sternin, Methods of non-commutative analysis, de Gruyter Stud. Math. 22, de Gruyter, Berlin, 1996.
- [17] E. Nelson, Operator differential equations, Lecture Notes, Princeton University (1964-1965).
- [18] E. Nelson, Operants: A functional calculus for non-commuting operators, in: Functional analysis and related topics, edited by Felix E. Browder, Springer-Verlag, New York, 1970, 172-187.
- [19] J. C. T. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Physics 7 (1966) 66-76. Zbl0139.45903
- [20] M. Riesz and B. Szőkefalvi-Nagy, Functional analysis, Ungar, New York, 1955.
- [21] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. Zbl0306.47014
- [22] M. E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98. Zbl0164.16604
- [23] H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1928.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.