Are EC-spaces AE(metrizable)?

Carlos Borges

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 135-143
  • ISSN: 0010-1354

How to cite

top

Borges, Carlos. "Are EC-spaces AE(metrizable)?." Colloquium Mathematicae 62.1 (1991): 135-143. <http://eudml.org/doc/210088>.

@article{Borges1991,
author = {Borges, Carlos},
journal = {Colloquium Mathematicae},
keywords = {AE(metrizable); $k_ω$-space; equiconnected; embedding; absolute extensor spaces; equiconnected spaces; Tikhonov space},
language = {eng},
number = {1},
pages = {135-143},
title = {Are EC-spaces AE(metrizable)?},
url = {http://eudml.org/doc/210088},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Borges, Carlos
TI - Are EC-spaces AE(metrizable)?
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 135
EP - 143
LA - eng
KW - AE(metrizable); $k_ω$-space; equiconnected; embedding; absolute extensor spaces; equiconnected spaces; Tikhonov space
UR - http://eudml.org/doc/210088
ER -

References

top
  1. [1] R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-404. Zbl0073.39601
  2. [2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Polish Scientific Publishers, Warszawa 1975. 
  3. [3] C. R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617. Zbl0199.25701
  4. [4] C. R. Borges, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30. Zbl0276.54025
  5. [5] C. R. Borges, On stratifiable spaces, ibid. 17 (1966), 1-16. 
  6. [6] C. R. Borges, Continuous selections for one-to-finite continuous multifunctions, Questions Answers Gen. Topology 3 (1985/86), 103-109. 
  7. [7] C. R. Borges, Negligibility in F-spaces, Math. Japon. 32 (1987), 521-530. Zbl0707.46001
  8. [8] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 62 (1965), 187-193. Zbl0151.30301
  9. [9] J. Dugundji, Topology, Allyn and Bacon, Boston 1966. 
  10. [10] E. A. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806. Zbl0052.11502
  11. [11] E. A. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416. Zbl0178.25903
  12. [12] J. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 63 (1956), 272-284. Zbl0071.17302
  13. [13] J. Nagata, Modern Dimension Theory, Heldermann Verlag, Berlin 1983. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.