The Reidemeister zeta function and the computation of the Nielsen zeta function
Colloquium Mathematicum (1991)
- Volume: 62, Issue: 1, page 153-166
- ISSN: 0010-1354
Access Full Article
topHow to cite
topFel'shtyn, A.. "The Reidemeister zeta function and the computation of the Nielsen zeta function." Colloquium Mathematicum 62.1 (1991): 153-166. <http://eudml.org/doc/210090>.
@article{Felshtyn1991,
author = {Fel'shtyn, A.},
journal = {Colloquium Mathematicum},
keywords = {Reidemeister zeta function; Nielsen zeta function},
language = {eng},
number = {1},
pages = {153-166},
title = {The Reidemeister zeta function and the computation of the Nielsen zeta function},
url = {http://eudml.org/doc/210090},
volume = {62},
year = {1991},
}
TY - JOUR
AU - Fel'shtyn, A.
TI - The Reidemeister zeta function and the computation of the Nielsen zeta function
JO - Colloquium Mathematicum
PY - 1991
VL - 62
IS - 1
SP - 153
EP - 166
LA - eng
KW - Reidemeister zeta function; Nielsen zeta function
UR - http://eudml.org/doc/210090
ER -
References
top- [1] A. L. Fel'shtyn, New zeta function in dynamics, in: Tenth Internat. Conf. on Nonlinear Oscillations, Varna, Abstracts of papers, Bulgar. Acad. Sci., 1984, 208.
- [2] A. L. Fel'shtyn, A new zeta-function in Nielsen theory and the universal product formula for dynamic zeta-functions, Funktsional. Anal. i Prilozhen. 21 (2) (1987), 90-91 (in Russian); English transl.: Functional Anal. Appl. 21 (1987), 168-170.
- [3] A. L. Fel'shtyn, Zeta functions in Nielsen theory, Funktsional. Anal. i Prilozhen. 22 (1) (1988), 87-88 (in Russian); English transl.: Functional Anal. Appl. 22 (1988), 76-77.
- [4] A. L. Fel'shtyn, New zeta functions for dynamical systems and Nielsen fixed point theory, in: Lecture Notes in Math. 1346, Springer, 1988, 33-55.
- [5] A. L. Fel'shtyn, Dynamical zeta-function and the Nielsen theory, in: Baku Internat. Topological Conf., Abstracts of papers, Akad. Nauk SSSR, 1988, 311.
- [6] A. L. Fel'shtyn, The Reidemeister and the Nielsen zeta functions, in: Proc. Baku Internat. Topological Conf., to appear.
- [7] P. R. Heath, Product formulae for Nielsen numbers of fibre maps, Pacific J. Math. 117 (2) (1985), 267-289.
- [8] N. V. Ivanov, Entropy and the Nielsen numbers, Dokl. Akad. Nauk SSSR 265 (2) (1982), 284-287 (in Russian); English transl.: Soviet Math. Dokl. 26 (1982), 63-66.
- [9] B. Jiang, Nielsen Fixed Point Theory, Contemp. Math. 14, Birkhäuser, 1983.
- [10] S. Lefschetz, Continuous transformations of manifolds, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 90-93.
- [11] J. Nielsen, Untersuchungen zur Topologie des geschlossenen zweiseitigen Fläche, Acta Math. 50 (1927), 189-358.
- [12] V. B. Pilyugina and A. L. Fel'shtyn, The Nielsen zeta function, Funktsional. Anal. i Prilozhen. 19 (4) (1985), 61-67 (in Russian); English transl.: Functional. Anal. Appl. 19 (1985), 300-305.
- [13] K. Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936), 586-593.
- [14] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-179.
- [15] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.
- [16] W. Thurston, Three dimensional manifolds, kleinian groups, and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (3) (1982), 357-381.
- [17] A. Weil, Numbers of solutions of equations in finite fields, ibid. 55 (1949), 497-508.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.