Integral equations of convolution type with power nonlinearity

S. Askhabov

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 49-65
  • ISSN: 0010-1354

How to cite

top

Askhabov, S.. "Integral equations of convolution type with power nonlinearity." Colloquium Mathematicae 62.1 (1991): 49-65. <http://eudml.org/doc/210099>.

@article{Askhabov1991,
author = {Askhabov, S.},
journal = {Colloquium Mathematicae},
keywords = {power nonlinearity; nonlinear convolution equation; Boussinesq equation; stability; perturbations; method of monotone operators},
language = {eng},
number = {1},
pages = {49-65},
title = {Integral equations of convolution type with power nonlinearity},
url = {http://eudml.org/doc/210099},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Askhabov, S.
TI - Integral equations of convolution type with power nonlinearity
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 49
EP - 65
LA - eng
KW - power nonlinearity; nonlinear convolution equation; Boussinesq equation; stability; perturbations; method of monotone operators
UR - http://eudml.org/doc/210099
ER -

References

top
  1. [1] S. N. Askhabov, Application of the method of monotone operators to nonlinear integral equations of the convolution type and singular integral equations, Vyssh. Uchebn. Zaved. Math. 1981, (9) (232), 64-66; English transl. in Soviet Math. (Izv. Vuz.) 25 (1981). Zbl0482.45013
  2. [2] S. N. Askhabov, N. K. Karapetyants and A. Ya. Yakubov, A nonlinear equation of convolution type, Differentsialnye Uravneniya 22 (9) (1986), 1606-1609 (in Russian). Zbl0607.45003
  3. [3] J. Bear, D. Zaslavsky and S. Irmay, Physical Principles of Water Percolation Seepage, UNESCO, 1968. 
  4. [4] H. Gajewski, K. Gröger und K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin 1974. Zbl0289.47029
  5. [5] J. Goncerzewicz, H. Marcinkowska, W. Okrasiński and K. Tabisz, On the percolation of water from a cylindrical reservoir into the surrounding soil, Zastos. Mat. 16 (2) (1978), 249-261. Zbl0403.76078
  6. [6] N. K. Karapetyants, On a class of nonlinear equations of convolution type, in: Sci. Proc. Jubilee Sem. Boundary Value Problems, Minsk 1985, 158-161 (in Russian). 
  7. [7] M. A. Krasnoseł'skiĭ, Positive Solutions of Operator Equations, Fizmatgiz, Moscow 1962; English transl. Noordhoff, Groningen 1964. 
  8. [8] S. G. Krein et al., Functional Analysis, Nauka, Moscow 1972; English transl. of first ed., Noordhoff, 1972. 
  9. [9] W. Okrasiński, On the existence and uniqueness of nonnegative solutions of a certain non-linear convolution equation, Ann. Polon. Math. 36 (1979), 61-72. Zbl0412.45006
  10. [10] W. Okrasiński, On a nonlinear convolution equation occurring in the theory of the water percolation, ibid. 37 (1980), 223-229. Zbl0451.45004
  11. [11] W. Okrasiński, Some remarks about the infiltration of water from a cylindrical reservoir, Zastos. Mat. 16 (4) (1980), 641-646. Zbl0445.76073
  12. [12] P. Ya. Polubarinova-Kochina, Theory of Ground Water Movement, Gostekhizdat, Moscow 1952; English transl. Princeton Univ. Press, 1962. 
  13. [13] M. M. Vainberg, The Variational Method and the Method of Monotone Operators in the Theory of Nonlinear Equations, Nauka, Moscow 1972; English transl. Wiley, 1973. 
  14. [14] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1968. Zbl0157.38204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.